@inproceedings{asahara-etal-2018-predicting,
title = "Predicting {J}apanese Word Order in Double Object Constructions",
author = "Asahara, Masayuki and
Nambu, Satoshi and
Sano, Shin-Ichiro",
editor = "Idiart, Marco and
Lenci, Alessandro and
Poibeau, Thierry and
Villavicencio, Aline",
booktitle = "Proceedings of the Eight Workshop on Cognitive Aspects of Computational Language Learning and Processing",
month = jul,
year = "2018",
address = "Melbourne",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2805/",
doi = "10.18653/v1/W18-2805",
pages = "36--40",
abstract = "This paper presents a statistical model to predict Japanese word order in the double object constructions. We employed a Bayesian linear mixed model with manually annotated predicate-argument structure data. The findings from the refined corpus analysis confirmed the effects of information status of an NP as {\textquoteleft}givennew ordering' in addition to the effects of {\textquoteleft}long-before-short' as a tendency of the general Japanese word order."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="asahara-etal-2018-predicting">
<titleInfo>
<title>Predicting Japanese Word Order in Double Object Constructions</title>
</titleInfo>
<name type="personal">
<namePart type="given">Masayuki</namePart>
<namePart type="family">Asahara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nambu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shin-Ichiro</namePart>
<namePart type="family">Sano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Eight Workshop on Cognitive Aspects of Computational Language Learning and Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Idiart</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Lenci</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thierry</namePart>
<namePart type="family">Poibeau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Aline</namePart>
<namePart type="family">Villavicencio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a statistical model to predict Japanese word order in the double object constructions. We employed a Bayesian linear mixed model with manually annotated predicate-argument structure data. The findings from the refined corpus analysis confirmed the effects of information status of an NP as ‘givennew ordering’ in addition to the effects of ‘long-before-short’ as a tendency of the general Japanese word order.</abstract>
<identifier type="citekey">asahara-etal-2018-predicting</identifier>
<identifier type="doi">10.18653/v1/W18-2805</identifier>
<location>
<url>https://aclanthology.org/W18-2805/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>36</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Japanese Word Order in Double Object Constructions
%A Asahara, Masayuki
%A Nambu, Satoshi
%A Sano, Shin-Ichiro
%Y Idiart, Marco
%Y Lenci, Alessandro
%Y Poibeau, Thierry
%Y Villavicencio, Aline
%S Proceedings of the Eight Workshop on Cognitive Aspects of Computational Language Learning and Processing
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne
%F asahara-etal-2018-predicting
%X This paper presents a statistical model to predict Japanese word order in the double object constructions. We employed a Bayesian linear mixed model with manually annotated predicate-argument structure data. The findings from the refined corpus analysis confirmed the effects of information status of an NP as ‘givennew ordering’ in addition to the effects of ‘long-before-short’ as a tendency of the general Japanese word order.
%R 10.18653/v1/W18-2805
%U https://aclanthology.org/W18-2805/
%U https://doi.org/10.18653/v1/W18-2805
%P 36-40
Markdown (Informal)
[Predicting Japanese Word Order in Double Object Constructions](https://aclanthology.org/W18-2805/) (Asahara et al., CogACLL 2018)
ACL