@inproceedings{edmiston-stratos-2018-compositional,
title = "Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments",
author = "Edmiston, Daniel and
Stratos, Karl",
editor = "Dinu, Georgiana and
Ballesteros, Miguel and
Sil, Avirup and
Bowman, Sam and
Hamza, Wael and
Sogaard, Anders and
Naseem, Tahira and
Goldberg, Yoav",
booktitle = "Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for {NLP}",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-2901/",
doi = "10.18653/v1/W18-2901",
pages = "1--5",
abstract = "This work introduces a novel, linguistically motivated architecture for composing morphemes to derive word embeddings. The principal novelty in the work is to treat stems as vectors and affixes as functions over vectors. In this way, our model`s architecture more closely resembles the compositionality of morphemes in natural language. Such a model stands in opposition to models which treat morphemes uniformly, making no distinction between stem and affix. We run this new architecture on a dependency parsing task in Korean{---}a language rich in derivational morphology{---}and compare it against a lexical baseline,along with other sub-word architectures. StAffNet, the name of our architecture, shows competitive performance with the state-of-the-art on this task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="edmiston-stratos-2018-compositional">
<titleInfo>
<title>Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Edmiston</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Karl</namePart>
<namePart type="family">Stratos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Georgiana</namePart>
<namePart type="family">Dinu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Miguel</namePart>
<namePart type="family">Ballesteros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avirup</namePart>
<namePart type="family">Sil</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sam</namePart>
<namePart type="family">Bowman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wael</namePart>
<namePart type="family">Hamza</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anders</namePart>
<namePart type="family">Sogaard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tahira</namePart>
<namePart type="family">Naseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoav</namePart>
<namePart type="family">Goldberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work introduces a novel, linguistically motivated architecture for composing morphemes to derive word embeddings. The principal novelty in the work is to treat stems as vectors and affixes as functions over vectors. In this way, our model‘s architecture more closely resembles the compositionality of morphemes in natural language. Such a model stands in opposition to models which treat morphemes uniformly, making no distinction between stem and affix. We run this new architecture on a dependency parsing task in Korean—a language rich in derivational morphology—and compare it against a lexical baseline,along with other sub-word architectures. StAffNet, the name of our architecture, shows competitive performance with the state-of-the-art on this task.</abstract>
<identifier type="citekey">edmiston-stratos-2018-compositional</identifier>
<identifier type="doi">10.18653/v1/W18-2901</identifier>
<location>
<url>https://aclanthology.org/W18-2901/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>1</start>
<end>5</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments
%A Edmiston, Daniel
%A Stratos, Karl
%Y Dinu, Georgiana
%Y Ballesteros, Miguel
%Y Sil, Avirup
%Y Bowman, Sam
%Y Hamza, Wael
%Y Sogaard, Anders
%Y Naseem, Tahira
%Y Goldberg, Yoav
%S Proceedings of the Workshop on the Relevance of Linguistic Structure in Neural Architectures for NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F edmiston-stratos-2018-compositional
%X This work introduces a novel, linguistically motivated architecture for composing morphemes to derive word embeddings. The principal novelty in the work is to treat stems as vectors and affixes as functions over vectors. In this way, our model‘s architecture more closely resembles the compositionality of morphemes in natural language. Such a model stands in opposition to models which treat morphemes uniformly, making no distinction between stem and affix. We run this new architecture on a dependency parsing task in Korean—a language rich in derivational morphology—and compare it against a lexical baseline,along with other sub-word architectures. StAffNet, the name of our architecture, shows competitive performance with the state-of-the-art on this task.
%R 10.18653/v1/W18-2901
%U https://aclanthology.org/W18-2901/
%U https://doi.org/10.18653/v1/W18-2901
%P 1-5
Markdown (Informal)
[Compositional Morpheme Embeddings with Affixes as Functions and Stems as Arguments](https://aclanthology.org/W18-2901/) (Edmiston & Stratos, ACL 2018)
ACL