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Abstract

Semantic networks and semantic spaces
have been two prominent approaches to
represent lexical semantics. While a uni-
fied account of the lexical meaning re-
lies on one being able to convert between
these representations, in both directions,
the conversion direction from semantic
networks into semantic spaces started to
attract more attention recently. In this pa-
per we present a methodology for this con-
version and assess it with a case study.
When it is applied over WordNet, the per-
formance of the resulting embeddings in
a mainstream semantic similarity task is
very good, substantially superior to the
performance of word embeddings based
on very large collections of texts like
word2vec.

1 Introduction

The study of lexical semantics has been at the core
of the research on language science and technol-
ogy as the meaning of linguistic forms results from
the meaning of their lexical units and from the
way these are combined (Pelletier, 2016). How
to represent lexical semantics has thus been a cen-
tral topic of inquiry. Three broad families of ap-
proaches have emerged in this respect, namely
those advocating that lexical semantics is repre-
sented as a semantic network (Quillan, 1966), a
feature-based model (Minsky, 1975; Bobrow and
Norman, 1975), or a semantic space (Harris, 1954;
Osgood et al., 1957).

In terms of data structures, under a semantic
network approach, the meaning of a lexical unit
is represented as a node in a graph whose edges
between nodes encode different types of seman-
tic relations holding among the units (e.g. hyper-

nymy, meronymy, etc.). In a feature-based model,
the semantics of a lexicon is represented by a hash
table where a key is the lexical unit of interest and
the respective value is a set of other units denoting
typical characteristics of the denotation of the unit
in the key (e.g. role, usage or shape, etc.). Under
a semantic space perspective, in turn, the mean-
ing of a lexical unit is represented by a vector in
a high-dimensional space, where each component
is based on some frequency level of co-occurrence
with the other units in contexts of language usage.

The motivation for these three families of lexi-
cal representation is to be found in their different
suitability and success in explaining a wide range
of empirical phenomena, in terms of how these are
manifest in ordinary language usage and how they
are elicited in laboratory experimentation. These
phenomena are related to the acquisition, storage
and retrieval of lexical knowledge (e.g. the spread
activation effect (Meyer and Schvaneveldt, 1971),
the fan effect (Anderson, 1974), among many oth-
ers) and to how this knowledge interacts with other
cognitive faculties or tasks, including categoriza-
tion (Estes, 1994), reasoning (Rips, 1975), prob-
lem solving (Holyoak and Koh, 1987), learning
(Ross, 1984), etc.

In the scope of the formal and computational
modeling of lexical semantics, these approaches
have inspired a number of initiatives to build
repositories of lexical knowledge. Popular exam-
ples of such repositories are, for semantic net-
works, WordNet (Fellbaum, 1998), for feature-
based models, Small World of Words (De Deyne
et al., 2013), and for the semantic space, word2vec
(Mikolov et al., 2013a), among many others. In-
terestingly, to achieve the highest quality, reposi-
tories of different types typically resort to different
empirical sources of data. For instance, WordNet
is constructed on the basis of systematic lexical in-
tuitions handled by human experts; the informa-
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tion encoded in Small World of Words is evoked
from laypersons; and word2vec is built on the ba-
sis of the co-occurrence frequency of lexical units
in a collection of documents.

Even when motivated in the first place by psy-
cholinguistic research goals, these repositories of
lexical knowledge have been extraordinarily im-
portant for language technology. They have been
instrumental for major advances in language pro-
cessing tasks and applications such as word sense
disambiguation, part-of-speech tagging, named
entity recognition, sentiment analysis (e.g. (Li
and Jurafsky, 2015)), parsing (e.g. (Socher et al.,
2013)), textual entailment (e.g. (Baroni et al.,
2012)), discourse analysis (e.g. (Ji and Eisenstein,
2014)), among many others.1

The proliferation of different types of represen-
tation for the same object of research is common
in science, and searching for a unified rendering
of a given research domain has been a major goal
in many disciplines. To a large extent, such search
focuses on finding ways of converting from one
type of representation into another. Once this is
made possible, it brings not only the theoretical
satisfaction of getting a better unified insight into
the research object, but also important instrumen-
tal rewards of reapplying results, resources and
tools that had been obtained under one representa-
tion to the other representations, thus opening the
potential for further research advances.

This is the case also in what concerns the re-
search on lexical semantics. Establishing whether
and how any given lexical representation can be
converted into another representation is important
for a more unified account of it. On the language
science side, this will likely enhance the plausibil-
ity of our empirical modeling about how the mind-
brain handles lexical meaning. On the language
technology side, in turn, this will permit to reuse
resources and find new ways to combine different
sources of lexical information for better applica-
tion results.

In the present paper, we seek to contribute to-
wards a unified account of lexical semantics. We
report on the methodology we used to convert
from a semantic network based representation of
lexical meaning into a semantic space based one,
and on the successful evaluation results obtained
when applying that methodology. We resorted to

1For the vast number of applications of WordNet, see
http://lit.csci.unt.edu/∼wordnet

Princeton WordNet version 3 as a repository of the
lexical semantics of the English language, repre-
sented as a semantic graph, and converted a sub-
graph of it with half of its concepts into wnet2vec,
a collection of vectors in a high-dimension space.
These WordNet embeddings were evaluated un-
der the same conditions that semantic space based
repositories like word2vec are, namely under the
processing task of determining the semantic sim-
ilarity between pairs of lexical units. The evalua-
tion results obtained for wnet2vec are around 15%
superior to the results obtained for word2vec with
the same mainstream evaluation data set SimLex-
999 (Hill et al., 2016).

2 Distributional vectors from ontological
graphs

For a given word w, its distributional represen-
tation ~w (aka word embedding) is a high dimen-
sion vector whose elements ~wi record real val-
ued scores expressing the strength of the seman-
tic affinity of w with other words in the vocab-
ulary. The usual source of these scores, and ul-
timately the empirical base of word embeddings,
has been the frequency of co-occurrence between
words taken from large collections of text.

The goal here instead is to use semantic net-
works as the empirical source of word embed-
dings. This will permit that the lexical knowledge
that is encoded in a semantic graph be re-encoded
as an embeddings matrix compiling the distribu-
tional vectors of the words in the vocabulary.

To determine the strength of semantic affinity of
two words from their representation in a semantic
graph, we follow this intuition: the larger the num-
ber of paths and the shorter the paths connecting
any two nodes the stronger is their affinity.

To make this intuition operative we resort to the
following procedure, to be refined later on. First,
the semantic graph G is represented as an adja-
cency matrix M such that iff two nodes of G with
words wi and wj are related by an edge represent-
ing a direct semantic relation between them, the
element Mij is set to 1 (to 0 otherwise).

Second, to enrich M with scores that represent
the strength of semantic affinity of nodes not di-
rectly connected with each other by an edge, the
following cumulative iteration is resorted to

M
(n)
G = I + αM + α2M2 + . . .+ αnMn (1)

where I is the identity matrix; the n-th power of
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the transition matrix, Mn, is the matrix where
each Mij counts the number of paths of lenght n
between nodes i and j; and α < 1 is a decay fac-
tor determining how longer paths are dominated
by shorter ones.

Third, this iterative procedure is pursued until
it converges into matrix MG, which is analytically
obtained by an inverse matrix operation given by2

MG =
∞∑
e=0

(αM)e = (I − αM)−1 (2)

3 WordNet embeddings

In order to assess this procedure, we use it to
convert a mainstream ontological graph into an
embeddings matrix. We use Princeton WordNet
(Fellbaum, 1998) as our working semantic net-
work. This is a lexical ontology for English
with over 120k concepts that are related by over
25 types of semantic relations and comprise over
155k words (lemmas), from the categories Noun
(with 117k words), Verb, Adjective and Adverb.

The quality of the resulting semantic space
(based on a semantic network) is assessed by re-
sorting to the mainstream procedure to evaluate se-
mantic spaces: (i) it is used to solve the task of de-
termining the semantic similarity between words
in a mainstream test data set used in the litera-
ture; (ii) its performance is compared to the per-
formance of a mainstream semantic space (based
on a text collection), namely word2vec (Mikolov
et al., 2013b), which serves as our baseline.

The base data set was obtained by extracting a
sub-graph from WordNet that supports a 60k word
distributional matrix. All parts of speech in Word-
Net were considered.

The nodes in WordNet are related by differ-
ent types of semantic relations (e.g. hypernymy,
meronymy, etc.). Relations of different types were
taken into account with identical weight for the
sake of the conversion of the graph into a matrix.

Upon applying the conversion procedure by re-
solving equation (2),3 its outcome MG was sub-
ject to the Positive Point-wise Mutual Information
transformation (PMI+) seeking to reduce the even-
tual bias introduced by the conversion towards
words with more senses.

2This is equation (7.63) in (Newman, 2010) where it is
presented as a regular equivalence measure termed Katz sim-
ilarity.

3We used linalg.inv from the numpy package for the
inverse matrix calculation.

Model Similarity

wnet2vec 0.50

word2vec 0.44

Table 1: Performance in semantic similarity task
over SimLex-999 given by Spearman’s coefficient
(higher score is better).

For the sound application of the conversion,
each line in MG was normalized, using L2-norm,
so that it corresponds to a vector whose scores sum
to 1, corresponding to a transition matrix.

Finally, we used Principal Component Analysis
(PCA) (Wold et al., 1987) to transform the matrix,
reducing the size of the vectors and setting to 850
the dimension of the encoded semantic space.

To assess the quality of the resulting semantic
space, we resorted to the test data set SimLex-999
(Hill et al., 2016), containing a list of 999 pairs
of words. Each pair is associated with a score, on
a 0-10 scale, that indicates the strength of the se-
mantic similarity between the words in that pair.
For each pair, with the resulting embedding ma-
trix, the cosine between the vectors of the words
in that pair is calculated and mapped into the 0-
10 scale. The outcome is compared to the gold
standard scores in SimLex-999 resorting to Spear-
man’s rank correlation coefficient.4 The respective
scores are displayed in Table 1.

4 Discussion

These results indicate a clear advantage of around
15% of the WordNet embeddings, scoring 0.50,
over the word2vec embeddings, scoring 0.44. This
indicates that the proposed conversion procedure
is very effective.

WordNet embeddings is a semantic space em-
pirically based on an internal language resource:
on a systematic elicitation and recording of the
semantic relations between words, thus being
closely aligned with the lexical knowledge in the
minds of speakers. Word2vec, in turn, is a se-
mantic space empirically based on an external lan-
guage resource: on records of contingent language
usage, namely some texts that were produced by a
population of language users and happened to be

4We used the evaluate_word_pairs function from
Gensim package (Řehůřek and Sojka, 2010) to determine
the performance of both semantic spaces, the wnet2vec and
the word2vec embeddings.
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collected together. Hence, while words related by
some semantic relation are likely to be linked in
WordNet, they may happen to rarely or never oc-
cur in relevant context windows, as practical con-
straints on the production and usage of language
may not favor that. This may help to explain the
advantage of wnet2vec over word2vec.5

The conversion procedure is composed by a
number of steps where each may receive a range
of configurations. This opens a large experimental
space of which the experiment in Section 3 instan-
tiates one set of coordinates. In the remainder of
the present section we justify the eventual empir-
ical settings used and discuss the lessons learned
by exploring this experimental space. The con-
version procedure will be revisited in a backwards
fashion, from its final to its initial steps, with the
experiments being performed over the 60k subset
identified in Subsection 4.3.

4.1 Matrix manipulation

Vector dimension: There have been studies indi-
cating the positive effect of the reduction of the
dimensionality of the semantic space (e.g. (Un-
derhill et al., 2007; Grünauer and Vincze, 2015)).
We experimented with a range of final vector di-
mensions, namely sizes 100, 300, 850, 1000 and
3000, also over evaluation data sets other than just
SimLex-999.6 Results obtained consistently indi-
cated that size 850 leads to better performance.7

Dimensionality reduction: We compared two
different techniques for dimensionality reduction,
PCA (Wold et al., 1987) and a neural network
approach. For the neural solution, the encoder-
decoder architecture with a Sigmoid activation
function was employed. The model was trained
using a Nadam optimizer with binary cross en-
tropy as loss metric. Experimentation consistently
indicated that PCA is substantially more success-
ful.

Normalization and bias: We contrasted the
performance of the WordNet embeddings obtained
with and without normalization of the distribu-

5Naturally, the comparative advantage between a seman-
tic space based on a semantic network and another based on
a collection of texts depends also on the sizes of the net-
work and of the collection. The training corpus of word2vec-
GoogleNews-vectors we used is one of the largest, with an
impressive amount of 100 billion tokens, and a vocabulary
of 3 million types, which differently from the vocabulary
units in WordNet, are wordforms, not lemmas (Mikolov et al.,
2013a).

6More on evaluation data sets in Section 4.4
7The vector size in word2vec embeddings is 300.

tional vectors. Results consistently indicated the
advantage of doing normalization, even if for a
small margin, with a delta of around 0.08.

Ablation tests were done also with respect to
PMI+, which indicated a clear advantage of ap-
plying it.

4.2 Graph manipulation

Decay factor: The best results were achieved with
α = 0.75, after experimenting with values in the
range 0.65 to 0.85.

Picking semantic relations: Concepts in
WordNet are connected via semantic relations
of different types. The relations of Hyper-
nymy/Hyponymy, Synonymy and Antonymy play
an essential role in structuring a semantic network,
as without them the network could not exist. We
undertook experiments where all semantic rela-
tions or only these kernel relations were taken into
account for the conversion procedure, with results
indicating a clear advantage for using all relations.

Weighting semantic relations: In the defini-
tion of a semantic network, some types of re-
lations appear as necessary (e.g. Hypernymy),
while other appears as more secondary (e.g.
Meronymy). It might thus happen that the con-
version of a semantic network into a semantic
space might be optimized if different weights
were assigned to different relations accordingly.
We ran an experiment where different weights
were assigned to different relations, namely hyper-
nymy, hyponymy, antonymy and synonymy got 1,
meronymy and holonymy 0.8 and other relations
0.5; and another experiment where all types of
semantic relation were assigned the same weight.
Better results were obtained with the latter.

4.3 Base data sets

Subgraphs: The conversion procedure relies on
equation (2), whose complexity is dominated by
the calculation of the inverse matrix, which is of
exponential order. For the Princeton WordNet
graph, with over 120k concepts, given the size of
the adjacency matrix M1 is over 120k × 120k, its
calculation and the overall conversion of the on-
tological graph into the final embeddings matrix
faces substantial challenges in terms of the mem-
ory footprint. To cope with this issue, we resorted
to initial subgraphs of manageable size.8

8To invert a 60k matrix, numpy used all memory avail-
able in a machine with 32 CPUs/2.50GHz and 430Gb RAM.
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We reduced the size of M1 by eliminating
more sparse rows (rows with more zero elements),
corresponding to eliminating words in concepts
with lower number of outgoing edges in Word-
Net. Rows were ordered by decreasing sparsity,
with rows with identical level of sparsity (identi-
cal number of zero elements) randomly ordered
among themselves. The first 25k, 30k, 45k and
60k rows were extracted and used in the conver-
sion process. To maximize overlap wth test set
SimLex-999, its words in WordNet were retained.
The performance scores of the resulting models
are displayed in Table 2.

Random subgraphs 25k 30k 45k 60k

Semantic similarity 0.45 0.47 0.49 0.50

Table 2: Performance of wnet2vec in similarity
task over SimLex-999 (Spearman’s coefficient).

The larger the size of the WordNet subgraph the
better is the performance of the resulting embed-
dings. As they contain more concepts, which on
average are closer to each other, larger subgraphs
tend to be denser and generate less sparse adja-
cency matrices. This supports semantic spaces
with distributional vectors with more discrimina-
tive information on the semantic affinity of a word
with respect to others.

The progression of scores in Table 2, for sub-
graphs with matrices in the range 25k-60k, sup-
ports the conjecture that when enough computa-
tional means are available and the full 155k word
WordNet be used, the performance of the result-
ing embeddings may still improve by a substantial
margin over the result now observed for the 60k
matrix, with less than half of the words.

Additionally, we experimented with two spe-
cific subgraphs that were not randomly extracted
from WordNet, namely: the subgraph supporting
the matrix with the 13k most frequent words of
English;9 and the subgraph supporting the ma-
trix with the 13k words used in (De Deyne et al.,
2016),10 which have been selected to act as cue
words in psycholinguistic experiments for elic-
iting associated words from subjects. The per-
formance results of the resulting models are dis-

9To reach 13k, we used the 10k most common English
words, as determined by n-gram frequency analysis of the
Google’s Trillion Word Corpus, from (Kaufman, 2017), sup-
plemented with non repeating words from Wiktionary fre-
quency lists (Wiktionary, 2017).

10Available from https://smallworldofwords.org/en

played in Table 3.

Specific 13k 13k
subgraphs most frequent cue words

Similarity 0.47 0.50

Table 3: Performance of wnet2vec in similarity
task over SimLex-999 given by Spearman’s coeffi-
cient. First row indicates the sizes of the matrices
supported by specific subgraphs.

These matrices have less than 1/4 of the size
of the 60k matrix, and yet they show a better than
expected approximation to its performance, taking
into account the progression registered in Table 2.
These results indicate that larger size is not the
only factor improving the performance of Word-
Net embeddings. Very interestingly, they seem
to indicate that words more commonly used may
support semantic spaces that are more accurate to
discriminate semantic similarity.

Frequency of occurence in texts plays no direct
role in the conversion of semantic networks into
semantic spaces by equation (2). Hence this ef-
fect likely results from the fact captured by one of
the Zipf word distributions, that on average more
frequent words are more ambiguous than less fre-
quent ones: On average more frequent words ex-
press more concepts — that is, they occur in more
WordNet synsets — and thus enter in more outgo-
ing edges in the semantic network, and this should
support less sparse vectors in the semantic space.

This explanation is empirically supported by the
fact that the word ambiguity rates are 2.7 and 2.8,
in the sugraphs with 13k cue words and with 13k
most frequent words, respectively, while there is
a lower word ambiguity rate of around 1.5 for the
random graph with 60k words.11

Parts of Speech: Princeton WordNet covers
nouns, adjectives, verbs and adverbs. Nouns
(117k) are the largest portion of all words (155k)
in the graph and, among the different POS, they
support the most dense subgraph of semantic re-
lations. We run experiments with words from all
POS categories, and where only Nouns where con-
sidered. While results obtained with Nouns only
(0.44) are not that distant from the results obtained
with all POS (0.50), the latter setting consistently
showed better performance.

11This is obtained by counting n lemmas for a word that
enters WordNet under n POS categories. Word ambiguity
rate of the whole WordNet is 1.3.
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4.4 Testing data and metrics

To assess the robustness of the results obtained,
experiments were undertaken with: (i) yet an-
other evaluation metric, namely Pearson’s corre-
lation coefficient; (ii) further evaluation data sets
for semantic similarity, namely RG1965 (Ruben-
stein and Goodenough, 1965) and Wordsim-353-
Similarity (Agirre et al., 2009); (iii) and test-
ing over another task, namely semantic related-
ness, with the evaluation data sets Wordsim-353-
Relatedness (Agirre et al., 2009), MEN (Bruni
et al., 2012) and MTurk-771 (Halawi et al., 2012).
In these experiments we used our best settings,
with a random 60k subgraph, and our second best
settings, with the best model with a specific 13k
subgraph, cf. Subsection 4.3.

Additional metric: The evaluation scores ob-
tained over SimLex-999 with the Pearson’s coeffi-
cient are basically aligned with the scores already
obtained with Spearman’s coefficient, confirming
the superiority of the WordNet embeddings.

Additional data sets: Even with a number of
test pairs much lower than the pairs in SimLex-
999 and built under less standard procedure, and
thus supporting less reliable results, we evaluated
our models over the Wordsmith353-S and RG1965
data sets. Wnet2vec showed competitive perfor-
mance when put side by side with word2vec even
though their scores were not superior. With these
smaller alternative data sets, the results for the spe-
cific 13k model were slightly superior to the re-
sults for the random 60k model.

Additional task: The relation “semantic relat-
edness” is broader and less well defined than the
relation “semantic similarity”. Experiments with
a second task of determining semantic related-
ness showed that word2vec performs clearly bet-
ter on this task than on the task of semantic sim-
ilarity, while wnet2vec in general performs worst
on it. Wnet2vec is thus less prone than word2vec
to get fooled by words that are just semantically
related by not necessarily similar. This indicates
that the superiority of wnet2vec in the similarity
task results from an enhanced discriminative ca-
pacity, with it being better both at judging as sim-
ilar, words that are actually similar, and at judging
as non similar, not only words that may be clearly
non similar but also words that are semantically
related, and thus may be close to be similar.

The results obtained with these experiments are

displayed in Table 4.12

5 Related work

From semantic spaces to semantic networks:
There has been a long research tradition on se-
mantic networks enhanced with information ex-
tracted from text, including distributional vectors,
which in the limit may encompass semantic net-
works obtained from semantic spaces. As a way
of illustration, among many others, this includes
the work on semantic relations determined from
patterns based on regular expressions, either hand
crafted (Hearst, 1992), or learned from corpora
(Snow et al., 2005); work on semantic relations
predicted by classifiers running over distributional
vectors (Baroni et al., 2012; Roller et al., 2014;
Weeds et al., 2014); work on semantic relations
obtained with deep learning that integrates distri-
butional information and patterns of grammatical
dependency relations (Shwartz et al., 2016), in-
cluding the hard task of distinguishing synonymy
from antonymy (Nguyen et al., 2017); etc. While
being highly relevant for a unified account of lex-
ical semantics, this line of research addresses the
conversion direction, from semantic spaces to se-
mantic networks, that is not the major focus of this
paper.

From semantic networks to semantic spaces:
Work towards the conversion direction that is of
interest here is more recent. As a way of illus-
tration, among others, one can mention (Faruqui
et al., 2015), which explored retrofitting to refine
distributional representations using relational in-
formation, and (Yu and Dredze, 2014), which fo-
cused also on refining word embeddings with lex-
ical knowledge, but which are not addressing the
goal of obtaining semantic spaces solely on the ba-
sis of semantic networks as we do here.

That is the aim also of recent work like
(Camacho-Collados et al., 2015) who improve the
embeddings built from data sets made of selected
Wikipedia pages by resorting to the local, one-
edge relations of each relevant word in the Word-
Net graph.

Further recent works worth mentioning include
(Vendrov et al., 2015) that resorted to order em-
beddings, which however do not preserve dis-
tance and/or do not preserve directionality under

12Pairs in the evaluation data set but not in the semantic
space do not count to compute the evaluation score: propor-
tion of vocabulary overlap does not affect the scoring.
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data set task size over- w2vec n2vec n2vec w2vec n2vec n2vec
lap % 13k s 60k r 13k s 60k r

Spearman coef Pearson coef
SimLex-999 simil 999 99.8 0.44 0.50 0.50 0.45 0.52 0.51
RG1965 simil 65 100.0 0.75 0.65 0.56 0.75 0.75 0.72
Wordsim353-S simil 203 98.0 0.74 0.65 0.51 0.73 0.67 0.58

Wordsim353-R relat 252 97.6 0.61 0.32 0.31 0.58 0.33 0.30
MEN relat 3000 44.9 0.70 0.46 0.45 0.68 0.48 0.45
MTURK-771 relat 771 99.7 0.66 0.54 0.53 0.63 0.54 0.52

Table 4: Performance of different models in the semantic similarity (simil) and relatedness (relat) tasks
over different data sets measured by Spearman’s and Pearson’s coefficients. Models used: word2vec
(w2vec); wnet2vec with the random 60k subgraph (n2vec 60k r); and wnet2vec with the best specific
13k subgraph (n2vec 13k s), cf. Subsection 4.3. Overlap with the vocabulary of wnet2vec 60k random
appears in the fourth column.

the relevant semantic relations; (Nickel and Kiela,
2017) that experimented with computing embed-
dings not in Euclidean but in hyperbolic space,
namely the Poincaré ball model. A shortcoming
with these proposals is that their outcome is not
easily plugged into neural models. Also they are
not fit to evaluation on external tasks, like the se-
mantic similarity task, with their evaluation be-
ing rather based on their ability to complete miss-
ing edges from ontological graphs. In contrats,
an example of the sutability of wnet2vec to be
plugged into neural models and of its application
in a downstream task is reported in (Rodrigues
et al., 2018), where these embeddings support the
predicition of brain activation based on neural net-
works.

There has been also a long tradition of re-
search on learning vector embeddings from multi-
relational data of which, among many others, one
can refer (Bordes et al., 2013), (Lin et al., 2015),
and (Nickel et al., 2016). Though to a large extent
these are generic approaches for graph to vectors
conversion, also here the major focus has been on
exploring these models on their ability to complete
missing relations in knowledge bases rather than
to experiment them on natural language process-
ing and lexical semantics.

Other related approaches worth of note are
(De Deyne et al., 2016) and (Goikoetxea et al.,
2015). While being based also on the iterative con-
version procedure used here, the first concentrates
however on converting, not a semantic network,
but a fragment of the lexicon represented under a
feature-based approach into a semantic space.

While seeking to obtain WordNet embeddings,
the second resorts, however, not to a genuine
conversion procedure, but to a lossy intermediate
“textual” representation: it generates sequences of
words by concatenating words visited by random
walks over the WordNet; this “artificial text” is a
partial and contingent reflection of the semantic
network and is used to obtain distributional vec-
tors by resorting to typical word embeddings tech-
niques based on text.

Distances in a semantic graph:
The task of determining the semantic similar-

ity between two words can be performed not only
on the basis of the distance of their respective
vectors in a semantic space, but also on the ba-
sis of the distance of the respective concepts in
a lexical semantic network, like WordNet. There
has been a long research tradition on this issue
whose major proposals include (Jiang and Con-
rath, 1997), (Lin, 1998), (Leacock and Chodorow,
1998), (Hirst and St-Onge, 1998),(Resnik, 1999),
among others, which received nice comparative
assessments in (Ferlez and Gams, 2004) and (Bu-
danitsky and Hirst, 2006), including their correla-
tion with human judgments.

In this context, it is worth of note the work
by (Hughes and Ramage, 2007), which resorts to
random graph walks over WordNet edges. Dif-
ferently from our approach, its goal is to obtain
word-specific stationary probability distributions
— such that the semantic affinity of two words is
based on the similarity of their probability distri-
butions —, rather than to obtain vectorial repre-
sentations for words in a shared distributional se-
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mantic space.
The focus of the present paper is on an effec-

tive method to convert a semantic network into a
semantic space, with the graph-based affinity ob-
tained by the chaining of "local" one-edge dis-
tances ensured by the iteration in (1)-(2) being
central for that goal.

It will be interesting to understand whether it
will be possible to consider, as an alternative,
those graph-based metrics of semantic similarity
for any two nodes anywhere in the graph — re-
sorting to the "non-local" multi-edge distance be-
tween the two input words. It remains to be under-
stood whether they can be resorted to as the ba-
sis of an "all vs. all" type of procedures for an
exhaustive screening of the graph that are compu-
tationally tractable — thus aiming at keeping up
with an effective method for graph to matrix con-
version of an entire lexical semantic network that
resists the eventual exponential explosion.

6 Conclusions

In this paper, we offer a contribution towards a
unified account of lexical semantics. We propose a
methodology to convert from semantic networks,
that are encoded in ontological graphs and em-
pirically based on systematic linguistic intuitions
(in their higher quality incarnations), to semantic
spaces, that are encoded in distributional vectors
and empirically based on very large collections
of texts (in their higher quality implementations).
This conversion methodology relies on a straight-
forward yet powerful intuition — the larger the
number of paths and the shorter the paths connect-
ing two nodes in an ontological graph the stronger
is their semantic affinity —, with iteration (1)
making it operative in order to generate a distri-
butional matrix from an ontological graph.

We report also on the results of assessing this
conversion methodology with a case study, namely
by applying it to a subgraph of WordNet with less
than half of its words (60k), randomly selected
from the ones whose senses have a larger num-
ber of outgoing edges. The resulting distributional
vectors wnet2vec were evaluated under the main-
stream task of determining the semantic similarity
of words arranged in pairs, against the mainstream
gold standard SimLex-999, with very good results.
The performance of wnet2vec was around 15% su-
perior to the performance of word2vec, trained on
a 100 billion token collection of texts. This in-

dicates that the proposed conversion procedure is
very effective and that the WordNet embeddings
are competitive when compared to text based em-
beddings.

It is nevertheless worth underlying that the re-
search goal of this paper was not to search for
word embeddings that outperform all previous
proposals known in the literature in terms of in-
trinsic evaluation tasks, like semantic similarity,
etc., or when they are embedded in larger systems.
Its research goal was rather to demonstrate that it
is feasible to create very effective word embed-
dings from semantic networks with a straightfor-
ward and yet powerful method of conversion from
semantic networks to semantic spaces that, given
its simplicity, offer the promise to generalize very
well for more types of lexical networks and on-
tologies other than just WordNet, which was the
case study used here.

The fact that less than half of the words in
WordNet were used in the reported experiment re-
inforces this positive expectation with respect to
the strength of the proposed approach, and point
towards future work that will seek to use larger
portions of WordNet, as computational limitation
can be overcome.

The results reported in this paper thus hint
at very promising research avenues, including,
among others, experiments with further ontologies
of different domains, empirical origins, etc.; with
cross-lingual triangulation with aligned WordNets
and aligned embeddings; with reciprocal rein-
forcement of ontological graphs and distributional
vectors; with other metrics of semantic affinity in
a graph, etc.

The wnet2vec data and software and their future
updates are distributed at https://github.
com/nlx-group/WordNetEmbeddings
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