@inproceedings{vulic-2018-injecting,
title = "Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation",
author = "Vuli{\'c}, Ivan",
editor = "Augenstein, Isabelle and
Cao, Kris and
He, He and
Hill, Felix and
Gella, Spandana and
Kiros, Jamie and
Mei, Hongyuan and
Misra, Dipendra",
booktitle = "Proceedings of the Third Workshop on Representation Learning for {NLP}",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3018",
doi = "10.18653/v1/W18-3018",
pages = "137--143",
abstract = "Word vector space specialisation models offer a portable, light-weight approach to fine-tuning arbitrary distributional vector spaces to discern between synonymy and antonymy. Their effectiveness is drawn from external linguistic constraints that specify the exact lexical relation between words. In this work, we show that a careful selection of the external constraints can steer and improve the specialisation. By simply selecting appropriate constraints, we report state-of-the-art results on a suite of tasks with well-defined benchmarks where modeling lexical contrast is crucial: 1) true semantic similarity, with highest reported scores on SimLex-999 and SimVerb-3500 to date; 2) detecting antonyms; and 3) distinguishing antonyms from synonyms.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="vulic-2018-injecting">
<titleInfo>
<title>Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Vulić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Representation Learning for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Isabelle</namePart>
<namePart type="family">Augenstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kris</namePart>
<namePart type="family">Cao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">He</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Felix</namePart>
<namePart type="family">Hill</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Spandana</namePart>
<namePart type="family">Gella</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jamie</namePart>
<namePart type="family">Kiros</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hongyuan</namePart>
<namePart type="family">Mei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dipendra</namePart>
<namePart type="family">Misra</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Word vector space specialisation models offer a portable, light-weight approach to fine-tuning arbitrary distributional vector spaces to discern between synonymy and antonymy. Their effectiveness is drawn from external linguistic constraints that specify the exact lexical relation between words. In this work, we show that a careful selection of the external constraints can steer and improve the specialisation. By simply selecting appropriate constraints, we report state-of-the-art results on a suite of tasks with well-defined benchmarks where modeling lexical contrast is crucial: 1) true semantic similarity, with highest reported scores on SimLex-999 and SimVerb-3500 to date; 2) detecting antonyms; and 3) distinguishing antonyms from synonyms.</abstract>
<identifier type="citekey">vulic-2018-injecting</identifier>
<identifier type="doi">10.18653/v1/W18-3018</identifier>
<location>
<url>https://aclanthology.org/W18-3018</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>137</start>
<end>143</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation
%A Vulić, Ivan
%Y Augenstein, Isabelle
%Y Cao, Kris
%Y He, He
%Y Hill, Felix
%Y Gella, Spandana
%Y Kiros, Jamie
%Y Mei, Hongyuan
%Y Misra, Dipendra
%S Proceedings of the Third Workshop on Representation Learning for NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F vulic-2018-injecting
%X Word vector space specialisation models offer a portable, light-weight approach to fine-tuning arbitrary distributional vector spaces to discern between synonymy and antonymy. Their effectiveness is drawn from external linguistic constraints that specify the exact lexical relation between words. In this work, we show that a careful selection of the external constraints can steer and improve the specialisation. By simply selecting appropriate constraints, we report state-of-the-art results on a suite of tasks with well-defined benchmarks where modeling lexical contrast is crucial: 1) true semantic similarity, with highest reported scores on SimLex-999 and SimVerb-3500 to date; 2) detecting antonyms; and 3) distinguishing antonyms from synonyms.
%R 10.18653/v1/W18-3018
%U https://aclanthology.org/W18-3018
%U https://doi.org/10.18653/v1/W18-3018
%P 137-143
Markdown (Informal)
[Injecting Lexical Contrast into Word Vectors by Guiding Vector Space Specialisation](https://aclanthology.org/W18-3018) (Vulić, RepL4NLP 2018)
ACL