@inproceedings{lai-etal-2018-simple,
title = "A Simple End-to-End Question Answering Model for Product Information",
author = "Lai, Tuan and
Bui, Trung and
Li, Sheng and
Lipka, Nedim",
editor = "Hahn, Udo and
Hoste, V{\'e}ronique and
Tsai, Ming-Feng",
booktitle = "Proceedings of the First Workshop on Economics and Natural Language Processing",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3105/",
doi = "10.18653/v1/W18-3105",
pages = "38--43",
abstract = "When evaluating a potential product purchase, customers may have many questions in mind. They want to get adequate information to determine whether the product of interest is worth their money. In this paper we present a simple deep learning model for answering questions regarding product facts and specifications. Given a question and a product specification, the model outputs a score indicating their relevance. To train and evaluate our proposed model, we collected a dataset of 7,119 questions that are related to 153 different products. Experimental results demonstrate that {--}despite its simplicity{--} the performance of our model is shown to be comparable to a more complex state-of-the-art baseline."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lai-etal-2018-simple">
<titleInfo>
<title>A Simple End-to-End Question Answering Model for Product Information</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tuan</namePart>
<namePart type="family">Lai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Trung</namePart>
<namePart type="family">Bui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sheng</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nedim</namePart>
<namePart type="family">Lipka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Economics and Natural Language Processing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Udo</namePart>
<namePart type="family">Hahn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Véronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ming-Feng</namePart>
<namePart type="family">Tsai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>When evaluating a potential product purchase, customers may have many questions in mind. They want to get adequate information to determine whether the product of interest is worth their money. In this paper we present a simple deep learning model for answering questions regarding product facts and specifications. Given a question and a product specification, the model outputs a score indicating their relevance. To train and evaluate our proposed model, we collected a dataset of 7,119 questions that are related to 153 different products. Experimental results demonstrate that –despite its simplicity– the performance of our model is shown to be comparable to a more complex state-of-the-art baseline.</abstract>
<identifier type="citekey">lai-etal-2018-simple</identifier>
<identifier type="doi">10.18653/v1/W18-3105</identifier>
<location>
<url>https://aclanthology.org/W18-3105/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>38</start>
<end>43</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T A Simple End-to-End Question Answering Model for Product Information
%A Lai, Tuan
%A Bui, Trung
%A Li, Sheng
%A Lipka, Nedim
%Y Hahn, Udo
%Y Hoste, Véronique
%Y Tsai, Ming-Feng
%S Proceedings of the First Workshop on Economics and Natural Language Processing
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F lai-etal-2018-simple
%X When evaluating a potential product purchase, customers may have many questions in mind. They want to get adequate information to determine whether the product of interest is worth their money. In this paper we present a simple deep learning model for answering questions regarding product facts and specifications. Given a question and a product specification, the model outputs a score indicating their relevance. To train and evaluate our proposed model, we collected a dataset of 7,119 questions that are related to 153 different products. Experimental results demonstrate that –despite its simplicity– the performance of our model is shown to be comparable to a more complex state-of-the-art baseline.
%R 10.18653/v1/W18-3105
%U https://aclanthology.org/W18-3105/
%U https://doi.org/10.18653/v1/W18-3105
%P 38-43
Markdown (Informal)
[A Simple End-to-End Question Answering Model for Product Information](https://aclanthology.org/W18-3105/) (Lai et al., ACL 2018)
ACL