@inproceedings{mave-etal-2018-language,
    title = "Language Identification and Analysis of Code-Switched Social Media Text",
    author = "Mave, Deepthi  and
      Maharjan, Suraj  and
      Solorio, Thamar",
    editor = "Aguilar, Gustavo  and
      AlGhamdi, Fahad  and
      Soto, Victor  and
      Solorio, Thamar  and
      Diab, Mona  and
      Hirschberg, Julia",
    booktitle = "Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3206/",
    doi = "10.18653/v1/W18-3206",
    pages = "51--61",
    abstract = "In this paper, we detail our work on comparing different word-level language identification systems for code-switched Hindi-English data and a standard Spanish-English dataset. In this regard, we build a new code-switched dataset for Hindi-English. To understand the code-switching patterns in these language pairs, we investigate different code-switching metrics. We find that the CRF model outperforms the neural network based models by a margin of 2-5 percentage points for Spanish-English and 3-5 percentage points for Hindi-English."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="mave-etal-2018-language">
    <titleInfo>
        <title>Language Identification and Analysis of Code-Switched Social Media Text</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Deepthi</namePart>
        <namePart type="family">Mave</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Suraj</namePart>
        <namePart type="family">Maharjan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Thamar</namePart>
        <namePart type="family">Solorio</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Gustavo</namePart>
            <namePart type="family">Aguilar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Fahad</namePart>
            <namePart type="family">AlGhamdi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Victor</namePart>
            <namePart type="family">Soto</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thamar</namePart>
            <namePart type="family">Solorio</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mona</namePart>
            <namePart type="family">Diab</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hirschberg</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we detail our work on comparing different word-level language identification systems for code-switched Hindi-English data and a standard Spanish-English dataset. In this regard, we build a new code-switched dataset for Hindi-English. To understand the code-switching patterns in these language pairs, we investigate different code-switching metrics. We find that the CRF model outperforms the neural network based models by a margin of 2-5 percentage points for Spanish-English and 3-5 percentage points for Hindi-English.</abstract>
    <identifier type="citekey">mave-etal-2018-language</identifier>
    <identifier type="doi">10.18653/v1/W18-3206</identifier>
    <location>
        <url>https://aclanthology.org/W18-3206/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>51</start>
            <end>61</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Language Identification and Analysis of Code-Switched Social Media Text
%A Mave, Deepthi
%A Maharjan, Suraj
%A Solorio, Thamar
%Y Aguilar, Gustavo
%Y AlGhamdi, Fahad
%Y Soto, Victor
%Y Solorio, Thamar
%Y Diab, Mona
%Y Hirschberg, Julia
%S Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F mave-etal-2018-language
%X In this paper, we detail our work on comparing different word-level language identification systems for code-switched Hindi-English data and a standard Spanish-English dataset. In this regard, we build a new code-switched dataset for Hindi-English. To understand the code-switching patterns in these language pairs, we investigate different code-switching metrics. We find that the CRF model outperforms the neural network based models by a margin of 2-5 percentage points for Spanish-English and 3-5 percentage points for Hindi-English.
%R 10.18653/v1/W18-3206
%U https://aclanthology.org/W18-3206/
%U https://doi.org/10.18653/v1/W18-3206
%P 51-61
Markdown (Informal)
[Language Identification and Analysis of Code-Switched Social Media Text](https://aclanthology.org/W18-3206/) (Mave et al., ACL 2018)
ACL