@inproceedings{attia-etal-2018-ghht,
title = "{GHHT} at {CALCS} 2018: Named Entity Recognition for Dialectal {A}rabic Using Neural Networks",
author = "Attia, Mohammed and
Samih, Younes and
Maier, Wolfgang",
editor = "Aguilar, Gustavo and
AlGhamdi, Fahad and
Soto, Victor and
Solorio, Thamar and
Diab, Mona and
Hirschberg, Julia",
booktitle = "Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3212/",
doi = "10.18653/v1/W18-3212",
pages = "98--102",
abstract = "This paper describes our system submission to the CALCS 2018 shared task on named entity recognition on code-switched data for the language variant pair of Modern Standard Arabic and Egyptian dialectal Arabic. We build a a Deep Neural Network that combines word and character-based representations in convolutional and recurrent networks with a CRF layer. The model is augmented with stacked layers of enriched information such pre-trained embeddings, Brown clusters and named entity gazetteers. Our system is ranked second among those participating in the shared task achieving an FB1 average of 70.09{\%}."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="attia-etal-2018-ghht">
<titleInfo>
<title>GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mohammed</namePart>
<namePart type="family">Attia</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Younes</namePart>
<namePart type="family">Samih</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Maier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gustavo</namePart>
<namePart type="family">Aguilar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fahad</namePart>
<namePart type="family">AlGhamdi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Victor</namePart>
<namePart type="family">Soto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mona</namePart>
<namePart type="family">Diab</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Hirschberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system submission to the CALCS 2018 shared task on named entity recognition on code-switched data for the language variant pair of Modern Standard Arabic and Egyptian dialectal Arabic. We build a a Deep Neural Network that combines word and character-based representations in convolutional and recurrent networks with a CRF layer. The model is augmented with stacked layers of enriched information such pre-trained embeddings, Brown clusters and named entity gazetteers. Our system is ranked second among those participating in the shared task achieving an FB1 average of 70.09%.</abstract>
<identifier type="citekey">attia-etal-2018-ghht</identifier>
<identifier type="doi">10.18653/v1/W18-3212</identifier>
<location>
<url>https://aclanthology.org/W18-3212/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>98</start>
<end>102</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks
%A Attia, Mohammed
%A Samih, Younes
%A Maier, Wolfgang
%Y Aguilar, Gustavo
%Y AlGhamdi, Fahad
%Y Soto, Victor
%Y Solorio, Thamar
%Y Diab, Mona
%Y Hirschberg, Julia
%S Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F attia-etal-2018-ghht
%X This paper describes our system submission to the CALCS 2018 shared task on named entity recognition on code-switched data for the language variant pair of Modern Standard Arabic and Egyptian dialectal Arabic. We build a a Deep Neural Network that combines word and character-based representations in convolutional and recurrent networks with a CRF layer. The model is augmented with stacked layers of enriched information such pre-trained embeddings, Brown clusters and named entity gazetteers. Our system is ranked second among those participating in the shared task achieving an FB1 average of 70.09%.
%R 10.18653/v1/W18-3212
%U https://aclanthology.org/W18-3212/
%U https://doi.org/10.18653/v1/W18-3212
%P 98-102
Markdown (Informal)
[GHHT at CALCS 2018: Named Entity Recognition for Dialectal Arabic Using Neural Networks](https://aclanthology.org/W18-3212/) (Attia et al., ACL 2018)
ACL