@inproceedings{sikdar-etal-2018-named,
    title = "Named Entity Recognition on Code-Switched Data Using Conditional Random Fields",
    author = {Sikdar, Utpal Kumar  and
      Barik, Biswanath  and
      Gamb{\"a}ck, Bj{\"o}rn},
    editor = "Aguilar, Gustavo  and
      AlGhamdi, Fahad  and
      Soto, Victor  and
      Solorio, Thamar  and
      Diab, Mona  and
      Hirschberg, Julia",
    booktitle = "Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3215/",
    doi = "10.18653/v1/W18-3215",
    pages = "115--119",
    abstract = "Named Entity Recognition is an important information extraction task that identifies proper names in unstructured texts and classifies them into some pre-defined categories. Identification of named entities in code-mixed social media texts is a more difficult and challenging task as the contexts are short, ambiguous and often noisy. This work proposes a Conditional Random Fields based named entity recognition system to identify proper names in code-switched data and classify them into nine categories. The system ranked fifth among nine participant systems and achieved a 59.25{\%} F1-score."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sikdar-etal-2018-named">
    <titleInfo>
        <title>Named Entity Recognition on Code-Switched Data Using Conditional Random Fields</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Utpal</namePart>
        <namePart type="given">Kumar</namePart>
        <namePart type="family">Sikdar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Biswanath</namePart>
        <namePart type="family">Barik</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Björn</namePart>
        <namePart type="family">Gambäck</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Gustavo</namePart>
            <namePart type="family">Aguilar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Fahad</namePart>
            <namePart type="family">AlGhamdi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Victor</namePart>
            <namePart type="family">Soto</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Thamar</namePart>
            <namePart type="family">Solorio</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mona</namePart>
            <namePart type="family">Diab</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Julia</namePart>
            <namePart type="family">Hirschberg</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Named Entity Recognition is an important information extraction task that identifies proper names in unstructured texts and classifies them into some pre-defined categories. Identification of named entities in code-mixed social media texts is a more difficult and challenging task as the contexts are short, ambiguous and often noisy. This work proposes a Conditional Random Fields based named entity recognition system to identify proper names in code-switched data and classify them into nine categories. The system ranked fifth among nine participant systems and achieved a 59.25% F1-score.</abstract>
    <identifier type="citekey">sikdar-etal-2018-named</identifier>
    <identifier type="doi">10.18653/v1/W18-3215</identifier>
    <location>
        <url>https://aclanthology.org/W18-3215/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>115</start>
            <end>119</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Named Entity Recognition on Code-Switched Data Using Conditional Random Fields
%A Sikdar, Utpal Kumar
%A Barik, Biswanath
%A Gambäck, Björn
%Y Aguilar, Gustavo
%Y AlGhamdi, Fahad
%Y Soto, Victor
%Y Solorio, Thamar
%Y Diab, Mona
%Y Hirschberg, Julia
%S Proceedings of the Third Workshop on Computational Approaches to Linguistic Code-Switching
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F sikdar-etal-2018-named
%X Named Entity Recognition is an important information extraction task that identifies proper names in unstructured texts and classifies them into some pre-defined categories. Identification of named entities in code-mixed social media texts is a more difficult and challenging task as the contexts are short, ambiguous and often noisy. This work proposes a Conditional Random Fields based named entity recognition system to identify proper names in code-switched data and classify them into nine categories. The system ranked fifth among nine participant systems and achieved a 59.25% F1-score.
%R 10.18653/v1/W18-3215
%U https://aclanthology.org/W18-3215/
%U https://doi.org/10.18653/v1/W18-3215
%P 115-119
Markdown (Informal)
[Named Entity Recognition on Code-Switched Data Using Conditional Random Fields](https://aclanthology.org/W18-3215/) (Sikdar et al., ACL 2018)
ACL