@inproceedings{dudy-bedrick-2018-compositional,
title = "Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication",
author = "Dudy, Shiran and
Bedrick, Steven",
editor = "Haffari, Reza and
Cherry, Colin and
Foster, George and
Khadivi, Shahram and
Salehi, Bahar",
booktitle = "Proceedings of the Workshop on Deep Learning Approaches for Low-Resource {NLP}",
month = jul,
year = "2018",
address = "Melbourne",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3404/",
doi = "10.18653/v1/W18-3404",
pages = "25--32",
abstract = "Icon-based communication systems are widely used in the field of Augmentative and Alternative Communication. Typically, icon-based systems have lagged behind word- and character-based systems in terms of predictive typing functionality, due to the challenges inherent to training icon-based language models. We propose a method for synthesizing training data for use in icon-based language models, and explore two different modeling strategies. We propose a method to generate language models for corpus-less symbol-set."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dudy-bedrick-2018-compositional">
<titleInfo>
<title>Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shiran</namePart>
<namePart type="family">Dudy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bedrick</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Reza</namePart>
<namePart type="family">Haffari</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Colin</namePart>
<namePart type="family">Cherry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Foster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahram</namePart>
<namePart type="family">Khadivi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bahar</namePart>
<namePart type="family">Salehi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Icon-based communication systems are widely used in the field of Augmentative and Alternative Communication. Typically, icon-based systems have lagged behind word- and character-based systems in terms of predictive typing functionality, due to the challenges inherent to training icon-based language models. We propose a method for synthesizing training data for use in icon-based language models, and explore two different modeling strategies. We propose a method to generate language models for corpus-less symbol-set.</abstract>
<identifier type="citekey">dudy-bedrick-2018-compositional</identifier>
<identifier type="doi">10.18653/v1/W18-3404</identifier>
<location>
<url>https://aclanthology.org/W18-3404/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>25</start>
<end>32</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication
%A Dudy, Shiran
%A Bedrick, Steven
%Y Haffari, Reza
%Y Cherry, Colin
%Y Foster, George
%Y Khadivi, Shahram
%Y Salehi, Bahar
%S Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne
%F dudy-bedrick-2018-compositional
%X Icon-based communication systems are widely used in the field of Augmentative and Alternative Communication. Typically, icon-based systems have lagged behind word- and character-based systems in terms of predictive typing functionality, due to the challenges inherent to training icon-based language models. We propose a method for synthesizing training data for use in icon-based language models, and explore two different modeling strategies. We propose a method to generate language models for corpus-less symbol-set.
%R 10.18653/v1/W18-3404
%U https://aclanthology.org/W18-3404/
%U https://doi.org/10.18653/v1/W18-3404
%P 25-32
Markdown (Informal)
[Compositional Language Modeling for Icon-Based Augmentative and Alternative Communication](https://aclanthology.org/W18-3404/) (Dudy & Bedrick, ACL 2018)
ACL