@inproceedings{ikhwantri-etal-2018-multi,
    title = "Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus",
    author = "Ikhwantri, Fariz  and
      Louvan, Samuel  and
      Kurniawan, Kemal  and
      Abisena, Bagas  and
      Rachman, Valdi  and
      Wicaksono, Alfan Farizki  and
      Mahendra, Rahmad",
    editor = "Haffari, Reza  and
      Cherry, Colin  and
      Foster, George  and
      Khadivi, Shahram  and
      Salehi, Bahar",
    booktitle = "Proceedings of the Workshop on Deep Learning Approaches for Low-Resource {NLP}",
    month = jul,
    year = "2018",
    address = "Melbourne",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3406/",
    doi = "10.18653/v1/W18-3406",
    pages = "43--50",
    abstract = "Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12{\%} less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ikhwantri-etal-2018-multi">
    <titleInfo>
        <title>Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Fariz</namePart>
        <namePart type="family">Ikhwantri</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Samuel</namePart>
        <namePart type="family">Louvan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Kemal</namePart>
        <namePart type="family">Kurniawan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Bagas</namePart>
        <namePart type="family">Abisena</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Valdi</namePart>
        <namePart type="family">Rachman</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Alfan</namePart>
        <namePart type="given">Farizki</namePart>
        <namePart type="family">Wicaksono</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rahmad</namePart>
        <namePart type="family">Mahendra</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Reza</namePart>
            <namePart type="family">Haffari</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Colin</namePart>
            <namePart type="family">Cherry</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">George</namePart>
            <namePart type="family">Foster</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Shahram</namePart>
            <namePart type="family">Khadivi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Bahar</namePart>
            <namePart type="family">Salehi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.</abstract>
    <identifier type="citekey">ikhwantri-etal-2018-multi</identifier>
    <identifier type="doi">10.18653/v1/W18-3406</identifier>
    <location>
        <url>https://aclanthology.org/W18-3406/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>43</start>
            <end>50</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus
%A Ikhwantri, Fariz
%A Louvan, Samuel
%A Kurniawan, Kemal
%A Abisena, Bagas
%A Rachman, Valdi
%A Wicaksono, Alfan Farizki
%A Mahendra, Rahmad
%Y Haffari, Reza
%Y Cherry, Colin
%Y Foster, George
%Y Khadivi, Shahram
%Y Salehi, Bahar
%S Proceedings of the Workshop on Deep Learning Approaches for Low-Resource NLP
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne
%F ikhwantri-etal-2018-multi
%X Most Semantic Role Labeling (SRL) approaches are supervised methods which require a significant amount of annotated corpus, and the annotation requires linguistic expertise. In this paper, we propose a Multi-Task Active Learning framework for Semantic Role Labeling with Entity Recognition (ER) as the auxiliary task to alleviate the need for extensive data and use additional information from ER to help SRL. We evaluate our approach on Indonesian conversational dataset. Our experiments show that multi-task active learning can outperform single-task active learning method and standard multi-task learning. According to our results, active learning is more efficient by using 12% less of training data compared to passive learning in both single-task and multi-task setting. We also introduce a new dataset for SRL in Indonesian conversational domain to encourage further research in this area.
%R 10.18653/v1/W18-3406
%U https://aclanthology.org/W18-3406/
%U https://doi.org/10.18653/v1/W18-3406
%P 43-50
Markdown (Informal)
[Multi-Task Active Learning for Neural Semantic Role Labeling on Low Resource Conversational Corpus](https://aclanthology.org/W18-3406/) (Ikhwantri et al., ACL 2018)
ACL