@inproceedings{basile-mazzei-2018-dipinfo,
title = "The {D}ip{I}nfo-{U}ni{T}o system for {SRST} 2018",
author = "Basile, Valerio and
Mazzei, Alessandro",
editor = "Mille, Simon and
Belz, Anja and
Bohnet, Bernd and
Pitler, Emily and
Wanner, Leo",
booktitle = "Proceedings of the First Workshop on Multilingual Surface Realisation",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3609/",
doi = "10.18653/v1/W18-3609",
pages = "65--71",
abstract = "This paper describes the system developed by the DipInfo-UniTo team to participate to the shallow track of the Surface Realization Shared Task 2018. The system employs two separate neural networks with different architectures to predict the word ordering and the morphological inflection independently from each other. The UniTO realizer is language independent, and its simple architecture allowed it to be scored in the central part of the final ranking of the shared task."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="basile-mazzei-2018-dipinfo">
<titleInfo>
<title>The DipInfo-UniTo system for SRST 2018</title>
</titleInfo>
<name type="personal">
<namePart type="given">Valerio</namePart>
<namePart type="family">Basile</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alessandro</namePart>
<namePart type="family">Mazzei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Multilingual Surface Realisation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Simon</namePart>
<namePart type="family">Mille</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anja</namePart>
<namePart type="family">Belz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernd</namePart>
<namePart type="family">Bohnet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Emily</namePart>
<namePart type="family">Pitler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Leo</namePart>
<namePart type="family">Wanner</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes the system developed by the DipInfo-UniTo team to participate to the shallow track of the Surface Realization Shared Task 2018. The system employs two separate neural networks with different architectures to predict the word ordering and the morphological inflection independently from each other. The UniTO realizer is language independent, and its simple architecture allowed it to be scored in the central part of the final ranking of the shared task.</abstract>
<identifier type="citekey">basile-mazzei-2018-dipinfo</identifier>
<identifier type="doi">10.18653/v1/W18-3609</identifier>
<location>
<url>https://aclanthology.org/W18-3609/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>65</start>
<end>71</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T The DipInfo-UniTo system for SRST 2018
%A Basile, Valerio
%A Mazzei, Alessandro
%Y Mille, Simon
%Y Belz, Anja
%Y Bohnet, Bernd
%Y Pitler, Emily
%Y Wanner, Leo
%S Proceedings of the First Workshop on Multilingual Surface Realisation
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F basile-mazzei-2018-dipinfo
%X This paper describes the system developed by the DipInfo-UniTo team to participate to the shallow track of the Surface Realization Shared Task 2018. The system employs two separate neural networks with different architectures to predict the word ordering and the morphological inflection independently from each other. The UniTO realizer is language independent, and its simple architecture allowed it to be scored in the central part of the final ranking of the shared task.
%R 10.18653/v1/W18-3609
%U https://aclanthology.org/W18-3609/
%U https://doi.org/10.18653/v1/W18-3609
%P 65-71
Markdown (Informal)
[The DipInfo-UniTo system for SRST 2018](https://aclanthology.org/W18-3609/) (Basile & Mazzei, ACL 2018)
ACL
- Valerio Basile and Alessandro Mazzei. 2018. The DipInfo-UniTo system for SRST 2018. In Proceedings of the First Workshop on Multilingual Surface Realisation, pages 65–71, Melbourne, Australia. Association for Computational Linguistics.