@inproceedings{desai-etal-2018-generating,
    title = "Generating Questions for Reading Comprehension using Coherence Relations",
    author = "Desai, Takshak  and
      Dakle, Parag  and
      Moldovan, Dan",
    editor = "Tseng, Yuen-Hsien  and
      Chen, Hsin-Hsi  and
      Ng, Vincent  and
      Komachi, Mamoru",
    booktitle = "Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-3701/",
    doi = "10.18653/v1/W18-3701",
    pages = "1--10",
    abstract = "In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author{'}s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student{'}s interpretation of the text."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="desai-etal-2018-generating">
    <titleInfo>
        <title>Generating Questions for Reading Comprehension using Coherence Relations</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Takshak</namePart>
        <namePart type="family">Desai</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Parag</namePart>
        <namePart type="family">Dakle</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dan</namePart>
        <namePart type="family">Moldovan</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Yuen-Hsien</namePart>
            <namePart type="family">Tseng</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Hsin-Hsi</namePart>
            <namePart type="family">Chen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Vincent</namePart>
            <namePart type="family">Ng</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mamoru</namePart>
            <namePart type="family">Komachi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author’s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student’s interpretation of the text.</abstract>
    <identifier type="citekey">desai-etal-2018-generating</identifier>
    <identifier type="doi">10.18653/v1/W18-3701</identifier>
    <location>
        <url>https://aclanthology.org/W18-3701/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>1</start>
            <end>10</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Generating Questions for Reading Comprehension using Coherence Relations
%A Desai, Takshak
%A Dakle, Parag
%A Moldovan, Dan
%Y Tseng, Yuen-Hsien
%Y Chen, Hsin-Hsi
%Y Ng, Vincent
%Y Komachi, Mamoru
%S Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F desai-etal-2018-generating
%X In this paper, we have proposed a technique for generating complex reading comprehension questions from a discourse that are more useful than factual ones derived from assertions. Our system produces a set of general-level questions using coherence relations and a set of well-defined syntactic transformations on the input text. Generated questions evaluate comprehension abilities like a comprehensive analysis of the text and its structure, correct identification of the author’s intent, a thorough evaluation of stated arguments; and a deduction of the high-level semantic relations that hold between text spans. Experiments performed on the RST-DT corpus allow us to conclude that our system possesses a strong aptitude for generating intricate questions. These questions are capable of effectively assessing a student’s interpretation of the text.
%R 10.18653/v1/W18-3701
%U https://aclanthology.org/W18-3701/
%U https://doi.org/10.18653/v1/W18-3701
%P 1-10
Markdown (Informal)
[Generating Questions for Reading Comprehension using Coherence Relations](https://aclanthology.org/W18-3701/) (Desai et al., NLP-TEA 2018)
ACL