@inproceedings{fu-etal-2018-chinese,
title = "{C}hinese Grammatical Error Diagnosis using Statistical and Prior Knowledge driven Features with Probabilistic Ensemble Enhancement",
author = "Fu, Ruiji and
Pei, Zhengqi and
Gong, Jiefu and
Song, Wei and
Teng, Dechuan and
Che, Wanxiang and
Wang, Shijin and
Hu, Guoping and
Liu, Ting",
editor = "Tseng, Yuen-Hsien and
Chen, Hsin-Hsi and
Ng, Vincent and
Komachi, Mamoru",
booktitle = "Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3707",
doi = "10.18653/v1/W18-3707",
pages = "52--59",
abstract = "This paper describes our system at NLPTEA-2018 Task {\#}1: Chinese Grammatical Error Diagnosis. Grammatical Error Diagnosis is one of the most challenging NLP tasks, which is to locate grammar errors and tell error types. Our system is built on the model of bidirectional Long Short-Term Memory with a conditional random field layer (BiLSTM-CRF) but integrates with several new features. First, richer features are considered in the BiLSTM-CRF model; second, a probabilistic ensemble approach is adopted; third, Template Matcher are used during a post-processing to bring in human knowledge. In official evaluation, our system obtains the highest F1 scores at identifying error types and locating error positions, the second highest F1 score at sentence level error detection. We also recommend error corrections for specific error types and achieve the best F1 performance among all participants.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-etal-2018-chinese">
<titleInfo>
<title>Chinese Grammatical Error Diagnosis using Statistical and Prior Knowledge driven Features with Probabilistic Ensemble Enhancement</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ruiji</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zhengqi</namePart>
<namePart type="family">Pei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiefu</namePart>
<namePart type="family">Gong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Song</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dechuan</namePart>
<namePart type="family">Teng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Wanxiang</namePart>
<namePart type="family">Che</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shijin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Guoping</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ting</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuen-Hsien</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our system at NLPTEA-2018 Task #1: Chinese Grammatical Error Diagnosis. Grammatical Error Diagnosis is one of the most challenging NLP tasks, which is to locate grammar errors and tell error types. Our system is built on the model of bidirectional Long Short-Term Memory with a conditional random field layer (BiLSTM-CRF) but integrates with several new features. First, richer features are considered in the BiLSTM-CRF model; second, a probabilistic ensemble approach is adopted; third, Template Matcher are used during a post-processing to bring in human knowledge. In official evaluation, our system obtains the highest F1 scores at identifying error types and locating error positions, the second highest F1 score at sentence level error detection. We also recommend error corrections for specific error types and achieve the best F1 performance among all participants.</abstract>
<identifier type="citekey">fu-etal-2018-chinese</identifier>
<identifier type="doi">10.18653/v1/W18-3707</identifier>
<location>
<url>https://aclanthology.org/W18-3707</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>52</start>
<end>59</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Chinese Grammatical Error Diagnosis using Statistical and Prior Knowledge driven Features with Probabilistic Ensemble Enhancement
%A Fu, Ruiji
%A Pei, Zhengqi
%A Gong, Jiefu
%A Song, Wei
%A Teng, Dechuan
%A Che, Wanxiang
%A Wang, Shijin
%A Hu, Guoping
%A Liu, Ting
%Y Tseng, Yuen-Hsien
%Y Chen, Hsin-Hsi
%Y Ng, Vincent
%Y Komachi, Mamoru
%S Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F fu-etal-2018-chinese
%X This paper describes our system at NLPTEA-2018 Task #1: Chinese Grammatical Error Diagnosis. Grammatical Error Diagnosis is one of the most challenging NLP tasks, which is to locate grammar errors and tell error types. Our system is built on the model of bidirectional Long Short-Term Memory with a conditional random field layer (BiLSTM-CRF) but integrates with several new features. First, richer features are considered in the BiLSTM-CRF model; second, a probabilistic ensemble approach is adopted; third, Template Matcher are used during a post-processing to bring in human knowledge. In official evaluation, our system obtains the highest F1 scores at identifying error types and locating error positions, the second highest F1 score at sentence level error detection. We also recommend error corrections for specific error types and achieve the best F1 performance among all participants.
%R 10.18653/v1/W18-3707
%U https://aclanthology.org/W18-3707
%U https://doi.org/10.18653/v1/W18-3707
%P 52-59
Markdown (Informal)
[Chinese Grammatical Error Diagnosis using Statistical and Prior Knowledge driven Features with Probabilistic Ensemble Enhancement](https://aclanthology.org/W18-3707) (Fu et al., NLP-TEA 2018)
ACL
- Ruiji Fu, Zhengqi Pei, Jiefu Gong, Wei Song, Dechuan Teng, Wanxiang Che, Shijin Wang, Guoping Hu, and Ting Liu. 2018. Chinese Grammatical Error Diagnosis using Statistical and Prior Knowledge driven Features with Probabilistic Ensemble Enhancement. In Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications, pages 52–59, Melbourne, Australia. Association for Computational Linguistics.