@inproceedings{marrese-taylor-etal-2018-learning,
title = "Learning to Automatically Generate Fill-In-The-Blank Quizzes",
author = "Marrese-Taylor, Edison and
Nakajima, Ai and
Matsuo, Yutaka and
Yuichi, Ono",
editor = "Tseng, Yuen-Hsien and
Chen, Hsin-Hsi and
Ng, Vincent and
Komachi, Mamoru",
booktitle = "Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3722/",
doi = "10.18653/v1/W18-3722",
pages = "152--156",
abstract = "In this paper we formalize the problem automatic fill-in-the-blank question generation using two standard NLP machine learning schemes, proposing concrete deep learning models for each. We present an empirical study based on data obtained from a language learning platform showing that both of our proposed settings offer promising results."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="marrese-taylor-etal-2018-learning">
<titleInfo>
<title>Learning to Automatically Generate Fill-In-The-Blank Quizzes</title>
</titleInfo>
<name type="personal">
<namePart type="given">Edison</namePart>
<namePart type="family">Marrese-Taylor</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ai</namePart>
<namePart type="family">Nakajima</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yutaka</namePart>
<namePart type="family">Matsuo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ono</namePart>
<namePart type="family">Yuichi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuen-Hsien</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we formalize the problem automatic fill-in-the-blank question generation using two standard NLP machine learning schemes, proposing concrete deep learning models for each. We present an empirical study based on data obtained from a language learning platform showing that both of our proposed settings offer promising results.</abstract>
<identifier type="citekey">marrese-taylor-etal-2018-learning</identifier>
<identifier type="doi">10.18653/v1/W18-3722</identifier>
<location>
<url>https://aclanthology.org/W18-3722/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>152</start>
<end>156</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Automatically Generate Fill-In-The-Blank Quizzes
%A Marrese-Taylor, Edison
%A Nakajima, Ai
%A Matsuo, Yutaka
%A Yuichi, Ono
%Y Tseng, Yuen-Hsien
%Y Chen, Hsin-Hsi
%Y Ng, Vincent
%Y Komachi, Mamoru
%S Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F marrese-taylor-etal-2018-learning
%X In this paper we formalize the problem automatic fill-in-the-blank question generation using two standard NLP machine learning schemes, proposing concrete deep learning models for each. We present an empirical study based on data obtained from a language learning platform showing that both of our proposed settings offer promising results.
%R 10.18653/v1/W18-3722
%U https://aclanthology.org/W18-3722/
%U https://doi.org/10.18653/v1/W18-3722
%P 152-156
Markdown (Informal)
[Learning to Automatically Generate Fill-In-The-Blank Quizzes](https://aclanthology.org/W18-3722/) (Marrese-Taylor et al., NLP-TEA 2018)
ACL
- Edison Marrese-Taylor, Ai Nakajima, Yutaka Matsuo, and Ono Yuichi. 2018. Learning to Automatically Generate Fill-In-The-Blank Quizzes. In Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications, pages 152–156, Melbourne, Australia. Association for Computational Linguistics.