@inproceedings{zhang-etal-2018-cmmc,
title = "{CMMC}-{BDRC} Solution to the {NLP}-{TEA}-2018 {C}hinese Grammatical Error Diagnosis Task",
author = "Zhang, Yongwei and
Hu, Qinan and
Liu, Fang and
Gu, Yueguo",
editor = "Tseng, Yuen-Hsien and
Chen, Hsin-Hsi and
Ng, Vincent and
Komachi, Mamoru",
booktitle = "Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-3726",
doi = "10.18653/v1/W18-3726",
pages = "180--187",
abstract = "Chinese grammatical error diagnosis is an important natural language processing (NLP) task, which is also an important application using artificial intelligence technology in language education. This paper introduces a system developed by the Chinese Multilingual {\&} Multimodal Corpus and Big Data Research Center for the NLP-TEA shared task, named Chinese Grammar Error Diagnosis (CGED). This system regards diagnosing errors task as a sequence tagging problem, while takes correction task as a text classification problem. Finally, in the 12 teams, this system gets the highest F1 score in the detection task and the second highest F1 score in mean in the identification task, position task and the correction task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhang-etal-2018-cmmc">
<titleInfo>
<title>CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yongwei</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qinan</namePart>
<namePart type="family">Hu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Fang</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yueguo</namePart>
<namePart type="family">Gu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yuen-Hsien</namePart>
<namePart type="family">Tseng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hsin-Hsi</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vincent</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mamoru</namePart>
<namePart type="family">Komachi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Chinese grammatical error diagnosis is an important natural language processing (NLP) task, which is also an important application using artificial intelligence technology in language education. This paper introduces a system developed by the Chinese Multilingual & Multimodal Corpus and Big Data Research Center for the NLP-TEA shared task, named Chinese Grammar Error Diagnosis (CGED). This system regards diagnosing errors task as a sequence tagging problem, while takes correction task as a text classification problem. Finally, in the 12 teams, this system gets the highest F1 score in the detection task and the second highest F1 score in mean in the identification task, position task and the correction task.</abstract>
<identifier type="citekey">zhang-etal-2018-cmmc</identifier>
<identifier type="doi">10.18653/v1/W18-3726</identifier>
<location>
<url>https://aclanthology.org/W18-3726</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>180</start>
<end>187</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task
%A Zhang, Yongwei
%A Hu, Qinan
%A Liu, Fang
%A Gu, Yueguo
%Y Tseng, Yuen-Hsien
%Y Chen, Hsin-Hsi
%Y Ng, Vincent
%Y Komachi, Mamoru
%S Proceedings of the 5th Workshop on Natural Language Processing Techniques for Educational Applications
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F zhang-etal-2018-cmmc
%X Chinese grammatical error diagnosis is an important natural language processing (NLP) task, which is also an important application using artificial intelligence technology in language education. This paper introduces a system developed by the Chinese Multilingual & Multimodal Corpus and Big Data Research Center for the NLP-TEA shared task, named Chinese Grammar Error Diagnosis (CGED). This system regards diagnosing errors task as a sequence tagging problem, while takes correction task as a text classification problem. Finally, in the 12 teams, this system gets the highest F1 score in the detection task and the second highest F1 score in mean in the identification task, position task and the correction task.
%R 10.18653/v1/W18-3726
%U https://aclanthology.org/W18-3726
%U https://doi.org/10.18653/v1/W18-3726
%P 180-187
Markdown (Informal)
[CMMC-BDRC Solution to the NLP-TEA-2018 Chinese Grammatical Error Diagnosis Task](https://aclanthology.org/W18-3726) (Zhang et al., NLP-TEA 2018)
ACL