@inproceedings{issa-2018-opennmt,
title = "An {O}pen{NMT} Model to {A}rabic Broken Plurals",
author = "Issa, Elsayed",
editor = "Sinha, Manjira and
Dasgupta, Tirthankar",
booktitle = "Proceedings of the First International Workshop on Language Cognition and Computational Models",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4103/",
pages = "22--30",
abstract = "Arabic Broken Plurals show an interesting phenomenon in Arabic morphology as they are formed by shifting the consonants of the syllables into different syllable patterns, and subsequently, the pattern of the word changes. The present paper, therefore, attempts to look at Arabic broken plurals from the perspective of neural networks by implementing an OpenNMT experiment to better understand and interpret the behavior of these plurals, especially when it comes to L2 acquisition. The results show that the model is successful in predicting the Arabic template. However, it fails to predict certain consonants such as the emphatics and the gutturals. This reinforces the fact that these consonants or sounds are the most difficult for L2 learners to acquire."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="issa-2018-opennmt">
<titleInfo>
<title>An OpenNMT Model to Arabic Broken Plurals</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elsayed</namePart>
<namePart type="family">Issa</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Language Cognition and Computational Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manjira</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Dasgupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Arabic Broken Plurals show an interesting phenomenon in Arabic morphology as they are formed by shifting the consonants of the syllables into different syllable patterns, and subsequently, the pattern of the word changes. The present paper, therefore, attempts to look at Arabic broken plurals from the perspective of neural networks by implementing an OpenNMT experiment to better understand and interpret the behavior of these plurals, especially when it comes to L2 acquisition. The results show that the model is successful in predicting the Arabic template. However, it fails to predict certain consonants such as the emphatics and the gutturals. This reinforces the fact that these consonants or sounds are the most difficult for L2 learners to acquire.</abstract>
<identifier type="citekey">issa-2018-opennmt</identifier>
<location>
<url>https://aclanthology.org/W18-4103/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>22</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An OpenNMT Model to Arabic Broken Plurals
%A Issa, Elsayed
%Y Sinha, Manjira
%Y Dasgupta, Tirthankar
%S Proceedings of the First International Workshop on Language Cognition and Computational Models
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F issa-2018-opennmt
%X Arabic Broken Plurals show an interesting phenomenon in Arabic morphology as they are formed by shifting the consonants of the syllables into different syllable patterns, and subsequently, the pattern of the word changes. The present paper, therefore, attempts to look at Arabic broken plurals from the perspective of neural networks by implementing an OpenNMT experiment to better understand and interpret the behavior of these plurals, especially when it comes to L2 acquisition. The results show that the model is successful in predicting the Arabic template. However, it fails to predict certain consonants such as the emphatics and the gutturals. This reinforces the fact that these consonants or sounds are the most difficult for L2 learners to acquire.
%U https://aclanthology.org/W18-4103/
%P 22-30
Markdown (Informal)
[An OpenNMT Model to Arabic Broken Plurals](https://aclanthology.org/W18-4103/) (Issa, LCCM 2018)
ACL
- Elsayed Issa. 2018. An OpenNMT Model to Arabic Broken Plurals. In Proceedings of the First International Workshop on Language Cognition and Computational Models, pages 22–30, Santa Fe, New Mexico, USA. Association for Computational Linguistics.