@inproceedings{kumar-bora-2018-part,
title = "Part-of-Speech Annotation of {E}nglish-{A}ssamese code-mixed texts: Two Approaches",
author = "Kumar, Ritesh and
Bora, Manas Jyoti",
editor = "Sinha, Manjira and
Dasgupta, Tirthankar",
booktitle = "Proceedings of the First International Workshop on Language Cognition and Computational Models",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4110",
pages = "94--103",
abstract = "In this paper, we discuss the development of a part-of-speech tagger for English-Assamese code-mixed texts. We provide a comparison of 2 approaches to annotating code-mixed data {--} a) annotation of the texts from the two languages using monolingual resources from each language and b) annotation of the text through a different resource created specifically for code-mixed data. We present a comparative study of the efforts required in each approach and the final performance of the system. Based on this, we argue that it might be a better approach to develop new technologies using code-mixed data instead of monolingual, {`}clean{'} data, especially for those languages where we do not have significant tools and technologies available till now.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kumar-bora-2018-part">
<titleInfo>
<title>Part-of-Speech Annotation of English-Assamese code-mixed texts: Two Approaches</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manas</namePart>
<namePart type="given">Jyoti</namePart>
<namePart type="family">Bora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First International Workshop on Language Cognition and Computational Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Manjira</namePart>
<namePart type="family">Sinha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tirthankar</namePart>
<namePart type="family">Dasgupta</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we discuss the development of a part-of-speech tagger for English-Assamese code-mixed texts. We provide a comparison of 2 approaches to annotating code-mixed data – a) annotation of the texts from the two languages using monolingual resources from each language and b) annotation of the text through a different resource created specifically for code-mixed data. We present a comparative study of the efforts required in each approach and the final performance of the system. Based on this, we argue that it might be a better approach to develop new technologies using code-mixed data instead of monolingual, ‘clean’ data, especially for those languages where we do not have significant tools and technologies available till now.</abstract>
<identifier type="citekey">kumar-bora-2018-part</identifier>
<location>
<url>https://aclanthology.org/W18-4110</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>94</start>
<end>103</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Part-of-Speech Annotation of English-Assamese code-mixed texts: Two Approaches
%A Kumar, Ritesh
%A Bora, Manas Jyoti
%Y Sinha, Manjira
%Y Dasgupta, Tirthankar
%S Proceedings of the First International Workshop on Language Cognition and Computational Models
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F kumar-bora-2018-part
%X In this paper, we discuss the development of a part-of-speech tagger for English-Assamese code-mixed texts. We provide a comparison of 2 approaches to annotating code-mixed data – a) annotation of the texts from the two languages using monolingual resources from each language and b) annotation of the text through a different resource created specifically for code-mixed data. We present a comparative study of the efforts required in each approach and the final performance of the system. Based on this, we argue that it might be a better approach to develop new technologies using code-mixed data instead of monolingual, ‘clean’ data, especially for those languages where we do not have significant tools and technologies available till now.
%U https://aclanthology.org/W18-4110
%P 94-103
Markdown (Informal)
[Part-of-Speech Annotation of English-Assamese code-mixed texts: Two Approaches](https://aclanthology.org/W18-4110) (Kumar & Bora, LCCM 2018)
ACL