@inproceedings{safi-samghabadi-etal-2018-ritual,
title = "{R}i{TUAL}-{UH} at {TRAC} 2018 Shared Task: Aggression Identification",
author = "Safi Samghabadi, Niloofar and
Mave, Deepthi and
Kar, Sudipta and
Solorio, Thamar",
editor = "Kumar, Ritesh and
Ojha, Atul Kr. and
Zampieri, Marcos and
Malmasi, Shervin",
booktitle = "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying ({TRAC}-2018)",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4402/",
pages = "12--18",
abstract = "This paper presents our system for {\textquotedblleft}TRAC 2018 Shared Task on Aggression Identification{\textquotedblright}. Our best systems for the English dataset use a combination of lexical and semantic features. However, for Hindi data using only lexical features gave us the best results. We obtained weighted F1-measures of 0.5921 for the English Facebook task (ranked 12th), 0.5663 for the English Social Media task (ranked 6th), 0.6292 for the Hindi Facebook task (ranked 1st), and 0.4853 for the Hindi Social Media task (ranked 2nd)."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="safi-samghabadi-etal-2018-ritual">
<titleInfo>
<title>RiTUAL-UH at TRAC 2018 Shared Task: Aggression Identification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Niloofar</namePart>
<namePart type="family">Safi Samghabadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deepthi</namePart>
<namePart type="family">Mave</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents our system for “TRAC 2018 Shared Task on Aggression Identification”. Our best systems for the English dataset use a combination of lexical and semantic features. However, for Hindi data using only lexical features gave us the best results. We obtained weighted F1-measures of 0.5921 for the English Facebook task (ranked 12th), 0.5663 for the English Social Media task (ranked 6th), 0.6292 for the Hindi Facebook task (ranked 1st), and 0.4853 for the Hindi Social Media task (ranked 2nd).</abstract>
<identifier type="citekey">safi-samghabadi-etal-2018-ritual</identifier>
<location>
<url>https://aclanthology.org/W18-4402/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>12</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T RiTUAL-UH at TRAC 2018 Shared Task: Aggression Identification
%A Safi Samghabadi, Niloofar
%A Mave, Deepthi
%A Kar, Sudipta
%A Solorio, Thamar
%Y Kumar, Ritesh
%Y Ojha, Atul Kr.
%Y Zampieri, Marcos
%Y Malmasi, Shervin
%S Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F safi-samghabadi-etal-2018-ritual
%X This paper presents our system for “TRAC 2018 Shared Task on Aggression Identification”. Our best systems for the English dataset use a combination of lexical and semantic features. However, for Hindi data using only lexical features gave us the best results. We obtained weighted F1-measures of 0.5921 for the English Facebook task (ranked 12th), 0.5663 for the English Social Media task (ranked 6th), 0.6292 for the Hindi Facebook task (ranked 1st), and 0.4853 for the Hindi Social Media task (ranked 2nd).
%U https://aclanthology.org/W18-4402/
%P 12-18
Markdown (Informal)
[RiTUAL-UH at TRAC 2018 Shared Task: Aggression Identification](https://aclanthology.org/W18-4402/) (Safi Samghabadi et al., TRAC 2018)
ACL
- Niloofar Safi Samghabadi, Deepthi Mave, Sudipta Kar, and Thamar Solorio. 2018. RiTUAL-UH at TRAC 2018 Shared Task: Aggression Identification. In Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018), pages 12–18, Santa Fe, New Mexico, USA. Association for Computational Linguistics.