@inproceedings{husseini-orabi-etal-2018-cyber,
    title = "Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text",
    author = "Husseini Orabi, Ahmed  and
      Husseini Orabi, Mahmoud  and
      Huang, Qianjia  and
      Inkpen, Diana  and
      Van Bruwaene, David",
    editor = "Kumar, Ritesh  and
      Ojha, Atul Kr.  and
      Zampieri, Marcos  and
      Malmasi, Shervin",
    booktitle = "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying ({TRAC}-2018)",
    month = aug,
    year = "2018",
    address = "Santa Fe, New Mexico, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-4419/",
    pages = "159--165",
    abstract = "In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74{\%} F1 performance for the Facebook test set and 56.9{\%} for the Twitter test set, for detecting aggression from text."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="husseini-orabi-etal-2018-cyber">
    <titleInfo>
        <title>Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Ahmed</namePart>
        <namePart type="family">Husseini Orabi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Mahmoud</namePart>
        <namePart type="family">Husseini Orabi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Qianjia</namePart>
        <namePart type="family">Huang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Diana</namePart>
        <namePart type="family">Inkpen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">David</namePart>
        <namePart type="family">Van Bruwaene</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-08</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ritesh</namePart>
            <namePart type="family">Kumar</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Atul</namePart>
            <namePart type="given">Kr.</namePart>
            <namePart type="family">Ojha</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Marcos</namePart>
            <namePart type="family">Zampieri</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Shervin</namePart>
            <namePart type="family">Malmasi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74% F1 performance for the Facebook test set and 56.9% for the Twitter test set, for detecting aggression from text.</abstract>
    <identifier type="citekey">husseini-orabi-etal-2018-cyber</identifier>
    <location>
        <url>https://aclanthology.org/W18-4419/</url>
    </location>
    <part>
        <date>2018-08</date>
        <extent unit="page">
            <start>159</start>
            <end>165</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text
%A Husseini Orabi, Ahmed
%A Husseini Orabi, Mahmoud
%A Huang, Qianjia
%A Inkpen, Diana
%A Van Bruwaene, David
%Y Kumar, Ritesh
%Y Ojha, Atul Kr.
%Y Zampieri, Marcos
%Y Malmasi, Shervin
%S Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F husseini-orabi-etal-2018-cyber
%X In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74% F1 performance for the Facebook test set and 56.9% for the Twitter test set, for detecting aggression from text.
%U https://aclanthology.org/W18-4419/
%P 159-165
Markdown (Informal)
[Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text](https://aclanthology.org/W18-4419/) (Husseini Orabi et al., TRAC 2018)
ACL