@inproceedings{husseini-orabi-etal-2018-cyber,
title = "Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text",
author = "Husseini Orabi, Ahmed and
Husseini Orabi, Mahmoud and
Huang, Qianjia and
Inkpen, Diana and
Van Bruwaene, David",
editor = "Kumar, Ritesh and
Ojha, Atul Kr. and
Zampieri, Marcos and
Malmasi, Shervin",
booktitle = "Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying ({TRAC}-2018)",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4419",
pages = "159--165",
abstract = "In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74{\%} F1 performance for the Facebook test set and 56.9{\%} for the Twitter test set, for detecting aggression from text.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="husseini-orabi-etal-2018-cyber">
<titleInfo>
<title>Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ahmed</namePart>
<namePart type="family">Husseini Orabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahmoud</namePart>
<namePart type="family">Husseini Orabi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Qianjia</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diana</namePart>
<namePart type="family">Inkpen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">David</namePart>
<namePart type="family">Van Bruwaene</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ritesh</namePart>
<namePart type="family">Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Atul</namePart>
<namePart type="given">Kr.</namePart>
<namePart type="family">Ojha</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marcos</namePart>
<namePart type="family">Zampieri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shervin</namePart>
<namePart type="family">Malmasi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico, USA</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74% F1 performance for the Facebook test set and 56.9% for the Twitter test set, for detecting aggression from text.</abstract>
<identifier type="citekey">husseini-orabi-etal-2018-cyber</identifier>
<location>
<url>https://aclanthology.org/W18-4419</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>159</start>
<end>165</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text
%A Husseini Orabi, Ahmed
%A Husseini Orabi, Mahmoud
%A Huang, Qianjia
%A Inkpen, Diana
%A Van Bruwaene, David
%Y Kumar, Ritesh
%Y Ojha, Atul Kr.
%Y Zampieri, Marcos
%Y Malmasi, Shervin
%S Proceedings of the First Workshop on Trolling, Aggression and Cyberbullying (TRAC-2018)
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico, USA
%F husseini-orabi-etal-2018-cyber
%X In this paper, we propose a novel deep-learning architecture for text classification, named cross segment-and-concatenate multi-task learning (CSC-MTL). We use CSC-MTL to improve the performance of cyber-aggression detection from text. Our approach provides a robust shared feature representation for multi-task learning by detecting contrasts and similarities among polarity and neutral classes. We participated in the cyber-aggression shared task under the team name uOttawa. We report 59.74% F1 performance for the Facebook test set and 56.9% for the Twitter test set, for detecting aggression from text.
%U https://aclanthology.org/W18-4419
%P 159-165
Markdown (Informal)
[Cyber-aggression Detection using Cross Segment-and-Concatenate Multi-Task Learning from Text](https://aclanthology.org/W18-4419) (Husseini Orabi et al., TRAC 2018)
ACL