@inproceedings{orlikowski-etal-2018-learning,
title = "Learning Diachronic Analogies to Analyze Concept Change",
author = "Orlikowski, Matthias and
Hartung, Matthias and
Cimiano, Philipp",
editor = "Alex, Beatrice and
Degaetano-Ortlieb, Stefania and
Feldman, Anna and
Kazantseva, Anna and
Reiter, Nils and
Szpakowicz, Stan",
booktitle = "Proceedings of the Second Joint {SIGHUM} Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4501/",
pages = "1--11",
abstract = "We propose to study the evolution of concepts by learning to complete diachronic analogies between lists of terms which relate to the same concept at different points in time. We present a number of models based on operations on word embedddings that correspond to different assumptions about the characteristics of diachronic analogies and change in concept vocabularies. These are tested in a quantitative evaluation for nine different concepts on a corpus of Dutch newspapers from the 1950s and 1980s. We show that a model which treats the concept terms as analogous and learns weights to compensate for diachronic changes (weighted linear combination) is able to more accurately predict the missing term than a learned transformation and two baselines for most of the evaluated concepts. We also find that all models tend to be coherent in relation to the represented concept, but less discriminative in regard to other concepts. Additionally, we evaluate the effect of aligning the time-specific embedding spaces using orthogonal Procrustes, finding varying effects on performance, depending on the model, concept and evaluation metric. For the weighted linear combination, however, results improve with alignment in a majority of cases. All related code is released publicly."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="orlikowski-etal-2018-learning">
<titleInfo>
<title>Learning Diachronic Analogies to Analyze Concept Change</title>
</titleInfo>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Orlikowski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matthias</namePart>
<namePart type="family">Hartung</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Philipp</namePart>
<namePart type="family">Cimiano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Alex</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose to study the evolution of concepts by learning to complete diachronic analogies between lists of terms which relate to the same concept at different points in time. We present a number of models based on operations on word embedddings that correspond to different assumptions about the characteristics of diachronic analogies and change in concept vocabularies. These are tested in a quantitative evaluation for nine different concepts on a corpus of Dutch newspapers from the 1950s and 1980s. We show that a model which treats the concept terms as analogous and learns weights to compensate for diachronic changes (weighted linear combination) is able to more accurately predict the missing term than a learned transformation and two baselines for most of the evaluated concepts. We also find that all models tend to be coherent in relation to the represented concept, but less discriminative in regard to other concepts. Additionally, we evaluate the effect of aligning the time-specific embedding spaces using orthogonal Procrustes, finding varying effects on performance, depending on the model, concept and evaluation metric. For the weighted linear combination, however, results improve with alignment in a majority of cases. All related code is released publicly.</abstract>
<identifier type="citekey">orlikowski-etal-2018-learning</identifier>
<location>
<url>https://aclanthology.org/W18-4501/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>1</start>
<end>11</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning Diachronic Analogies to Analyze Concept Change
%A Orlikowski, Matthias
%A Hartung, Matthias
%A Cimiano, Philipp
%Y Alex, Beatrice
%Y Degaetano-Ortlieb, Stefania
%Y Feldman, Anna
%Y Kazantseva, Anna
%Y Reiter, Nils
%Y Szpakowicz, Stan
%S Proceedings of the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F orlikowski-etal-2018-learning
%X We propose to study the evolution of concepts by learning to complete diachronic analogies between lists of terms which relate to the same concept at different points in time. We present a number of models based on operations on word embedddings that correspond to different assumptions about the characteristics of diachronic analogies and change in concept vocabularies. These are tested in a quantitative evaluation for nine different concepts on a corpus of Dutch newspapers from the 1950s and 1980s. We show that a model which treats the concept terms as analogous and learns weights to compensate for diachronic changes (weighted linear combination) is able to more accurately predict the missing term than a learned transformation and two baselines for most of the evaluated concepts. We also find that all models tend to be coherent in relation to the represented concept, but less discriminative in regard to other concepts. Additionally, we evaluate the effect of aligning the time-specific embedding spaces using orthogonal Procrustes, finding varying effects on performance, depending on the model, concept and evaluation metric. For the weighted linear combination, however, results improve with alignment in a majority of cases. All related code is released publicly.
%U https://aclanthology.org/W18-4501/
%P 1-11
Markdown (Informal)
[Learning Diachronic Analogies to Analyze Concept Change](https://aclanthology.org/W18-4501/) (Orlikowski et al., LaTeCH 2018)
ACL
- Matthias Orlikowski, Matthias Hartung, and Philipp Cimiano. 2018. Learning Diachronic Analogies to Analyze Concept Change. In Proceedings of the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature, pages 1–11, Santa Fe, New Mexico. Association for Computational Linguistics.