@inproceedings{schmidt-burghardt-2018-evaluation,
title = "An Evaluation of Lexicon-based Sentiment Analysis Techniques for the Plays of {G}otthold {E}phraim {L}essing",
author = "Schmidt, Thomas and
Burghardt, Manuel",
editor = "Alex, Beatrice and
Degaetano-Ortlieb, Stefania and
Feldman, Anna and
Kazantseva, Anna and
Reiter, Nils and
Szpakowicz, Stan",
booktitle = "Proceedings of the Second Joint {SIGHUM} Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature",
month = aug,
year = "2018",
address = "Santa Fe, New Mexico",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-4516/",
pages = "139--149",
abstract = "We present results from a project in the research area of sentiment analysis of drama texts, more concretely the plays of Gotthold Ephraim Lessing. We conducted an annotation study to create a gold standard for a systematic evaluation. The gold standard consists of 200 speeches of Lessing`s plays manually annotated with sentiment information. We explore the performance of different German sentiment lexicons and processing configurations like lemmatization, the extension of lexicons with historical linguistic variants or stop words elimination to explore the influence of these parameters and find best practices for our domain of application. The best performing configuration accomplishes an accuracy of 70{\%}. We discuss the problems and challenges for sentiment analysis in this area and describe our next steps toward further research."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="schmidt-burghardt-2018-evaluation">
<titleInfo>
<title>An Evaluation of Lexicon-based Sentiment Analysis Techniques for the Plays of Gotthold Ephraim Lessing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Thomas</namePart>
<namePart type="family">Schmidt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Manuel</namePart>
<namePart type="family">Burghardt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-08</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature</title>
</titleInfo>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Alex</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stefania</namePart>
<namePart type="family">Degaetano-Ortlieb</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Feldman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Kazantseva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nils</namePart>
<namePart type="family">Reiter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Stan</namePart>
<namePart type="family">Szpakowicz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Santa Fe, New Mexico</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present results from a project in the research area of sentiment analysis of drama texts, more concretely the plays of Gotthold Ephraim Lessing. We conducted an annotation study to create a gold standard for a systematic evaluation. The gold standard consists of 200 speeches of Lessing‘s plays manually annotated with sentiment information. We explore the performance of different German sentiment lexicons and processing configurations like lemmatization, the extension of lexicons with historical linguistic variants or stop words elimination to explore the influence of these parameters and find best practices for our domain of application. The best performing configuration accomplishes an accuracy of 70%. We discuss the problems and challenges for sentiment analysis in this area and describe our next steps toward further research.</abstract>
<identifier type="citekey">schmidt-burghardt-2018-evaluation</identifier>
<location>
<url>https://aclanthology.org/W18-4516/</url>
</location>
<part>
<date>2018-08</date>
<extent unit="page">
<start>139</start>
<end>149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Evaluation of Lexicon-based Sentiment Analysis Techniques for the Plays of Gotthold Ephraim Lessing
%A Schmidt, Thomas
%A Burghardt, Manuel
%Y Alex, Beatrice
%Y Degaetano-Ortlieb, Stefania
%Y Feldman, Anna
%Y Kazantseva, Anna
%Y Reiter, Nils
%Y Szpakowicz, Stan
%S Proceedings of the Second Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature
%D 2018
%8 August
%I Association for Computational Linguistics
%C Santa Fe, New Mexico
%F schmidt-burghardt-2018-evaluation
%X We present results from a project in the research area of sentiment analysis of drama texts, more concretely the plays of Gotthold Ephraim Lessing. We conducted an annotation study to create a gold standard for a systematic evaluation. The gold standard consists of 200 speeches of Lessing‘s plays manually annotated with sentiment information. We explore the performance of different German sentiment lexicons and processing configurations like lemmatization, the extension of lexicons with historical linguistic variants or stop words elimination to explore the influence of these parameters and find best practices for our domain of application. The best performing configuration accomplishes an accuracy of 70%. We discuss the problems and challenges for sentiment analysis in this area and describe our next steps toward further research.
%U https://aclanthology.org/W18-4516/
%P 139-149
Markdown (Informal)
[An Evaluation of Lexicon-based Sentiment Analysis Techniques for the Plays of Gotthold Ephraim Lessing](https://aclanthology.org/W18-4516/) (Schmidt & Burghardt, LaTeCH 2018)
ACL