@inproceedings{das-pon-barry-2018-turn,
title = "Turn-Taking Strategies for Human-Robot Peer-Learning Dialogue",
author = "Das, Ranjini and
Pon-Barry, Heather",
editor = "Komatani, Kazunori and
Litman, Diane and
Yu, Kai and
Papangelis, Alex and
Cavedon, Lawrence and
Nakano, Mikio",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5013/",
doi = "10.18653/v1/W18-5013",
pages = "119--129",
abstract = "In this paper, we apply the contribution model of grounding to a corpus of human-human peer-mentoring dialogues. From this analysis, we propose effective turn-taking strategies for human-robot interaction with a teachable robot. Specifically, we focus on (1) how robots can encourage humans to present and (2) how robots can signal that they are going to begin a new presentation. We evaluate the strategies against a corpus of human-robot dialogues and offer three guidelines for teachable robots to follow to achieve more human-like collaborative dialogue."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="das-pon-barry-2018-turn">
<titleInfo>
<title>Turn-Taking Strategies for Human-Robot Peer-Learning Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ranjini</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heather</namePart>
<namePart type="family">Pon-Barry</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Cavedon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper, we apply the contribution model of grounding to a corpus of human-human peer-mentoring dialogues. From this analysis, we propose effective turn-taking strategies for human-robot interaction with a teachable robot. Specifically, we focus on (1) how robots can encourage humans to present and (2) how robots can signal that they are going to begin a new presentation. We evaluate the strategies against a corpus of human-robot dialogues and offer three guidelines for teachable robots to follow to achieve more human-like collaborative dialogue.</abstract>
<identifier type="citekey">das-pon-barry-2018-turn</identifier>
<identifier type="doi">10.18653/v1/W18-5013</identifier>
<location>
<url>https://aclanthology.org/W18-5013/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>119</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Turn-Taking Strategies for Human-Robot Peer-Learning Dialogue
%A Das, Ranjini
%A Pon-Barry, Heather
%Y Komatani, Kazunori
%Y Litman, Diane
%Y Yu, Kai
%Y Papangelis, Alex
%Y Cavedon, Lawrence
%Y Nakano, Mikio
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F das-pon-barry-2018-turn
%X In this paper, we apply the contribution model of grounding to a corpus of human-human peer-mentoring dialogues. From this analysis, we propose effective turn-taking strategies for human-robot interaction with a teachable robot. Specifically, we focus on (1) how robots can encourage humans to present and (2) how robots can signal that they are going to begin a new presentation. We evaluate the strategies against a corpus of human-robot dialogues and offer three guidelines for teachable robots to follow to achieve more human-like collaborative dialogue.
%R 10.18653/v1/W18-5013
%U https://aclanthology.org/W18-5013/
%U https://doi.org/10.18653/v1/W18-5013
%P 119-129
Markdown (Informal)
[Turn-Taking Strategies for Human-Robot Peer-Learning Dialogue](https://aclanthology.org/W18-5013/) (Das & Pon-Barry, SIGDIAL 2018)
ACL