@inproceedings{lubis-etal-2018-unsupervised,
title = "Unsupervised Counselor Dialogue Clustering for Positive Emotion Elicitation in Neural Dialogue System",
author = "Lubis, Nurul and
Sakti, Sakriani and
Yoshino, Koichiro and
Nakamura, Satoshi",
editor = "Komatani, Kazunori and
Litman, Diane and
Yu, Kai and
Papangelis, Alex and
Cavedon, Lawrence and
Nakano, Mikio",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5017/",
doi = "10.18653/v1/W18-5017",
pages = "161--170",
abstract = "Positive emotion elicitation seeks to improve user`s emotional state through dialogue system interaction, where a chat-based scenario is layered with an implicit goal to address user`s emotional needs. Standard neural dialogue system approaches still fall short in this situation as they tend to generate only short, generic responses. Learning from expert actions is critical, as these potentially differ from standard dialogue acts. In this paper, we propose using a hierarchical neural network for response generation that is conditioned on 1) expert`s action, 2) dialogue context, and 3) user emotion, encoded from user input. We construct a corpus of interactions between a counselor and 30 participants following a negative emotional exposure to learn expert actions and responses in a positive emotion elicitation scenario. Instead of relying on the expensive, labor intensive, and often ambiguous human annotations, we unsupervisedly cluster the expert`s responses and use the resulting labels to train the network. Our experiments and evaluation show that the proposed approach yields lower perplexity and generates a larger variety of responses."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lubis-etal-2018-unsupervised">
<titleInfo>
<title>Unsupervised Counselor Dialogue Clustering for Positive Emotion Elicitation in Neural Dialogue System</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nurul</namePart>
<namePart type="family">Lubis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sakriani</namePart>
<namePart type="family">Sakti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Koichiro</namePart>
<namePart type="family">Yoshino</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Satoshi</namePart>
<namePart type="family">Nakamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Cavedon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Positive emotion elicitation seeks to improve user‘s emotional state through dialogue system interaction, where a chat-based scenario is layered with an implicit goal to address user‘s emotional needs. Standard neural dialogue system approaches still fall short in this situation as they tend to generate only short, generic responses. Learning from expert actions is critical, as these potentially differ from standard dialogue acts. In this paper, we propose using a hierarchical neural network for response generation that is conditioned on 1) expert‘s action, 2) dialogue context, and 3) user emotion, encoded from user input. We construct a corpus of interactions between a counselor and 30 participants following a negative emotional exposure to learn expert actions and responses in a positive emotion elicitation scenario. Instead of relying on the expensive, labor intensive, and often ambiguous human annotations, we unsupervisedly cluster the expert‘s responses and use the resulting labels to train the network. Our experiments and evaluation show that the proposed approach yields lower perplexity and generates a larger variety of responses.</abstract>
<identifier type="citekey">lubis-etal-2018-unsupervised</identifier>
<identifier type="doi">10.18653/v1/W18-5017</identifier>
<location>
<url>https://aclanthology.org/W18-5017/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>161</start>
<end>170</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Counselor Dialogue Clustering for Positive Emotion Elicitation in Neural Dialogue System
%A Lubis, Nurul
%A Sakti, Sakriani
%A Yoshino, Koichiro
%A Nakamura, Satoshi
%Y Komatani, Kazunori
%Y Litman, Diane
%Y Yu, Kai
%Y Papangelis, Alex
%Y Cavedon, Lawrence
%Y Nakano, Mikio
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F lubis-etal-2018-unsupervised
%X Positive emotion elicitation seeks to improve user‘s emotional state through dialogue system interaction, where a chat-based scenario is layered with an implicit goal to address user‘s emotional needs. Standard neural dialogue system approaches still fall short in this situation as they tend to generate only short, generic responses. Learning from expert actions is critical, as these potentially differ from standard dialogue acts. In this paper, we propose using a hierarchical neural network for response generation that is conditioned on 1) expert‘s action, 2) dialogue context, and 3) user emotion, encoded from user input. We construct a corpus of interactions between a counselor and 30 participants following a negative emotional exposure to learn expert actions and responses in a positive emotion elicitation scenario. Instead of relying on the expensive, labor intensive, and often ambiguous human annotations, we unsupervisedly cluster the expert‘s responses and use the resulting labels to train the network. Our experiments and evaluation show that the proposed approach yields lower perplexity and generates a larger variety of responses.
%R 10.18653/v1/W18-5017
%U https://aclanthology.org/W18-5017/
%U https://doi.org/10.18653/v1/W18-5017
%P 161-170
Markdown (Informal)
[Unsupervised Counselor Dialogue Clustering for Positive Emotion Elicitation in Neural Dialogue System](https://aclanthology.org/W18-5017/) (Lubis et al., SIGDIAL 2018)
ACL