@inproceedings{engonopoulos-etal-2018-discovering,
title = "Discovering User Groups for Natural Language Generation",
author = "Engonopoulos, Nikos and
Teichmann, Christoph and
Koller, Alexander",
editor = "Komatani, Kazunori and
Litman, Diane and
Yu, Kai and
Papangelis, Alex and
Cavedon, Lawrence and
Nakano, Mikio",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5018",
doi = "10.18653/v1/W18-5018",
pages = "171--179",
abstract = "We present a model which predicts how individual users of a dialog system understand and produce utterances based on user groups. In contrast to previous work, these user groups are not specified beforehand, but learned in training. We evaluate on two referring expression (RE) generation tasks; our experiments show that our model can identify user groups and learn how to most effectively talk to them, and can dynamically assign unseen users to the correct groups as they interact with the system.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="engonopoulos-etal-2018-discovering">
<titleInfo>
<title>Discovering User Groups for Natural Language Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Nikos</namePart>
<namePart type="family">Engonopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christoph</namePart>
<namePart type="family">Teichmann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Koller</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Cavedon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a model which predicts how individual users of a dialog system understand and produce utterances based on user groups. In contrast to previous work, these user groups are not specified beforehand, but learned in training. We evaluate on two referring expression (RE) generation tasks; our experiments show that our model can identify user groups and learn how to most effectively talk to them, and can dynamically assign unseen users to the correct groups as they interact with the system.</abstract>
<identifier type="citekey">engonopoulos-etal-2018-discovering</identifier>
<identifier type="doi">10.18653/v1/W18-5018</identifier>
<location>
<url>https://aclanthology.org/W18-5018</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>171</start>
<end>179</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discovering User Groups for Natural Language Generation
%A Engonopoulos, Nikos
%A Teichmann, Christoph
%A Koller, Alexander
%Y Komatani, Kazunori
%Y Litman, Diane
%Y Yu, Kai
%Y Papangelis, Alex
%Y Cavedon, Lawrence
%Y Nakano, Mikio
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F engonopoulos-etal-2018-discovering
%X We present a model which predicts how individual users of a dialog system understand and produce utterances based on user groups. In contrast to previous work, these user groups are not specified beforehand, but learned in training. We evaluate on two referring expression (RE) generation tasks; our experiments show that our model can identify user groups and learn how to most effectively talk to them, and can dynamically assign unseen users to the correct groups as they interact with the system.
%R 10.18653/v1/W18-5018
%U https://aclanthology.org/W18-5018
%U https://doi.org/10.18653/v1/W18-5018
%P 171-179
Markdown (Informal)
[Discovering User Groups for Natural Language Generation](https://aclanthology.org/W18-5018) (Engonopoulos et al., SIGDIAL 2018)
ACL
- Nikos Engonopoulos, Christoph Teichmann, and Alexander Koller. 2018. Discovering User Groups for Natural Language Generation. In Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue, pages 171–179, Melbourne, Australia. Association for Computational Linguistics.