@inproceedings{guerini-etal-2018-toward,
title = "Toward zero-shot Entity Recognition in Task-oriented Conversational Agents",
author = "Guerini, Marco and
Magnolini, Simone and
Balaraman, Vevake and
Magnini, Bernardo",
editor = "Komatani, Kazunori and
Litman, Diane and
Yu, Kai and
Papangelis, Alex and
Cavedon, Lawrence and
Nakano, Mikio",
booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
month = jul,
year = "2018",
address = "Melbourne, Australia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5036/",
doi = "10.18653/v1/W18-5036",
pages = "317--326",
abstract = "We present a domain portable zero-shot learning approach for entity recognition in task-oriented conversational agents, which does not assume any annotated sentences at training time. Rather, we derive a neural model of the entity names based only on available gazetteers, and then apply the model to recognize new entities in the context of user utterances. In order to evaluate our working hypothesis we focus on nominal entities that are largely used in e-commerce to name products. Through a set of experiments in two languages (English and Italian) and three different domains (furniture, food, clothing), we show that the neural gazetteer-based approach outperforms several competitive baselines, with minimal requirements of linguistic features."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="guerini-etal-2018-toward">
<titleInfo>
<title>Toward zero-shot Entity Recognition in Task-oriented Conversational Agents</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marco</namePart>
<namePart type="family">Guerini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simone</namePart>
<namePart type="family">Magnolini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vevake</namePart>
<namePart type="family">Balaraman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Magnini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kazunori</namePart>
<namePart type="family">Komatani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kai</namePart>
<namePart type="family">Yu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Papangelis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lawrence</namePart>
<namePart type="family">Cavedon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikio</namePart>
<namePart type="family">Nakano</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Melbourne, Australia</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present a domain portable zero-shot learning approach for entity recognition in task-oriented conversational agents, which does not assume any annotated sentences at training time. Rather, we derive a neural model of the entity names based only on available gazetteers, and then apply the model to recognize new entities in the context of user utterances. In order to evaluate our working hypothesis we focus on nominal entities that are largely used in e-commerce to name products. Through a set of experiments in two languages (English and Italian) and three different domains (furniture, food, clothing), we show that the neural gazetteer-based approach outperforms several competitive baselines, with minimal requirements of linguistic features.</abstract>
<identifier type="citekey">guerini-etal-2018-toward</identifier>
<identifier type="doi">10.18653/v1/W18-5036</identifier>
<location>
<url>https://aclanthology.org/W18-5036/</url>
</location>
<part>
<date>2018-07</date>
<extent unit="page">
<start>317</start>
<end>326</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Toward zero-shot Entity Recognition in Task-oriented Conversational Agents
%A Guerini, Marco
%A Magnolini, Simone
%A Balaraman, Vevake
%A Magnini, Bernardo
%Y Komatani, Kazunori
%Y Litman, Diane
%Y Yu, Kai
%Y Papangelis, Alex
%Y Cavedon, Lawrence
%Y Nakano, Mikio
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F guerini-etal-2018-toward
%X We present a domain portable zero-shot learning approach for entity recognition in task-oriented conversational agents, which does not assume any annotated sentences at training time. Rather, we derive a neural model of the entity names based only on available gazetteers, and then apply the model to recognize new entities in the context of user utterances. In order to evaluate our working hypothesis we focus on nominal entities that are largely used in e-commerce to name products. Through a set of experiments in two languages (English and Italian) and three different domains (furniture, food, clothing), we show that the neural gazetteer-based approach outperforms several competitive baselines, with minimal requirements of linguistic features.
%R 10.18653/v1/W18-5036
%U https://aclanthology.org/W18-5036/
%U https://doi.org/10.18653/v1/W18-5036
%P 317-326
Markdown (Informal)
[Toward zero-shot Entity Recognition in Task-oriented Conversational Agents](https://aclanthology.org/W18-5036/) (Guerini et al., SIGDIAL 2018)
ACL