@inproceedings{tseng-etal-2018-variational,
    title = "Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems",
    author = "Tseng, Bo-Hsiang  and
      Kreyssig, Florian  and
      Budzianowski, Pawe{\l}  and
      Casanueva, I{\~n}igo  and
      Wu, Yen-Chen  and
      Ultes, Stefan  and
      Ga{\v{s}}i{\'c}, Milica",
    editor = "Komatani, Kazunori  and
      Litman, Diane  and
      Yu, Kai  and
      Papangelis, Alex  and
      Cavedon, Lawrence  and
      Nakano, Mikio",
    booktitle = "Proceedings of the 19th Annual {SIG}dial Meeting on Discourse and Dialogue",
    month = jul,
    year = "2018",
    address = "Melbourne, Australia",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5039/",
    doi = "10.18653/v1/W18-5039",
    pages = "338--343",
    abstract = "Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired information. Traditional template-based generators can produce sentences with all necessary information, but these sentences are not sufficiently diverse. With RNN-based models, the diversity of the generated sentences can be high, however, in the process some information is lost. In this work, we improve an RNN-based generator by considering latent information at the sentence level during generation using conditional variational auto-encoder architecture. We demonstrate that our model outperforms the original RNN-based generator, while yielding highly diverse sentences. In addition, our model performs better when the training data is limited."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="tseng-etal-2018-variational">
    <titleInfo>
        <title>Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Bo-Hsiang</namePart>
        <namePart type="family">Tseng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Florian</namePart>
        <namePart type="family">Kreyssig</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Paweł</namePart>
        <namePart type="family">Budzianowski</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Iñigo</namePart>
        <namePart type="family">Casanueva</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yen-Chen</namePart>
        <namePart type="family">Wu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Stefan</namePart>
        <namePart type="family">Ultes</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Milica</namePart>
        <namePart type="family">Gašić</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-07</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Kazunori</namePart>
            <namePart type="family">Komatani</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Diane</namePart>
            <namePart type="family">Litman</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Kai</namePart>
            <namePart type="family">Yu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alex</namePart>
            <namePart type="family">Papangelis</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Lawrence</namePart>
            <namePart type="family">Cavedon</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Mikio</namePart>
            <namePart type="family">Nakano</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Melbourne, Australia</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired information. Traditional template-based generators can produce sentences with all necessary information, but these sentences are not sufficiently diverse. With RNN-based models, the diversity of the generated sentences can be high, however, in the process some information is lost. In this work, we improve an RNN-based generator by considering latent information at the sentence level during generation using conditional variational auto-encoder architecture. We demonstrate that our model outperforms the original RNN-based generator, while yielding highly diverse sentences. In addition, our model performs better when the training data is limited.</abstract>
    <identifier type="citekey">tseng-etal-2018-variational</identifier>
    <identifier type="doi">10.18653/v1/W18-5039</identifier>
    <location>
        <url>https://aclanthology.org/W18-5039/</url>
    </location>
    <part>
        <date>2018-07</date>
        <extent unit="page">
            <start>338</start>
            <end>343</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems
%A Tseng, Bo-Hsiang
%A Kreyssig, Florian
%A Budzianowski, Paweł
%A Casanueva, Iñigo
%A Wu, Yen-Chen
%A Ultes, Stefan
%A Gašić, Milica
%Y Komatani, Kazunori
%Y Litman, Diane
%Y Yu, Kai
%Y Papangelis, Alex
%Y Cavedon, Lawrence
%Y Nakano, Mikio
%S Proceedings of the 19th Annual SIGdial Meeting on Discourse and Dialogue
%D 2018
%8 July
%I Association for Computational Linguistics
%C Melbourne, Australia
%F tseng-etal-2018-variational
%X Cross-domain natural language generation (NLG) is still a difficult task within spoken dialogue modelling. Given a semantic representation provided by the dialogue manager, the language generator should generate sentences that convey desired information. Traditional template-based generators can produce sentences with all necessary information, but these sentences are not sufficiently diverse. With RNN-based models, the diversity of the generated sentences can be high, however, in the process some information is lost. In this work, we improve an RNN-based generator by considering latent information at the sentence level during generation using conditional variational auto-encoder architecture. We demonstrate that our model outperforms the original RNN-based generator, while yielding highly diverse sentences. In addition, our model performs better when the training data is limited.
%R 10.18653/v1/W18-5039
%U https://aclanthology.org/W18-5039/
%U https://doi.org/10.18653/v1/W18-5039
%P 338-343
Markdown (Informal)
[Variational Cross-domain Natural Language Generation for Spoken Dialogue Systems](https://aclanthology.org/W18-5039/) (Tseng et al., SIGDIAL 2018)
ACL