@inproceedings{van-aken-etal-2018-challenges,
title = "Challenges for Toxic Comment Classification: An In-Depth Error Analysis",
author = {van Aken, Betty and
Risch, Julian and
Krestel, Ralf and
L{\"o}ser, Alexander},
editor = "Fi{\v{s}}er, Darja and
Huang, Ruihong and
Prabhakaran, Vinodkumar and
Voigt, Rob and
Waseem, Zeerak and
Wernimont, Jacqueline",
booktitle = "Proceedings of the 2nd Workshop on Abusive Language Online ({ALW}2)",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5105/",
doi = "10.18653/v1/W18-5105",
pages = "33--42",
abstract = "Toxic comment classification has become an active research field with many recently proposed approaches. However, while these approaches address some of the task`s challenges others still remain unsolved and directions for further research are needed. To this end, we compare different deep learning and shallow approaches on a new, large comment dataset and propose an ensemble that outperforms all individual models. Further, we validate our findings on a second dataset. The results of the ensemble enable us to perform an extensive error analysis, which reveals open challenges for state-of-the-art methods and directions towards pending future research. These challenges include missing paradigmatic context and inconsistent dataset labels."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="van-aken-etal-2018-challenges">
<titleInfo>
<title>Challenges for Toxic Comment Classification: An In-Depth Error Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Betty</namePart>
<namePart type="family">van Aken</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julian</namePart>
<namePart type="family">Risch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ralf</namePart>
<namePart type="family">Krestel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexander</namePart>
<namePart type="family">Löser</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Darja</namePart>
<namePart type="family">Fišer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ruihong</namePart>
<namePart type="family">Huang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rob</namePart>
<namePart type="family">Voigt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacqueline</namePart>
<namePart type="family">Wernimont</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Toxic comment classification has become an active research field with many recently proposed approaches. However, while these approaches address some of the task‘s challenges others still remain unsolved and directions for further research are needed. To this end, we compare different deep learning and shallow approaches on a new, large comment dataset and propose an ensemble that outperforms all individual models. Further, we validate our findings on a second dataset. The results of the ensemble enable us to perform an extensive error analysis, which reveals open challenges for state-of-the-art methods and directions towards pending future research. These challenges include missing paradigmatic context and inconsistent dataset labels.</abstract>
<identifier type="citekey">van-aken-etal-2018-challenges</identifier>
<identifier type="doi">10.18653/v1/W18-5105</identifier>
<location>
<url>https://aclanthology.org/W18-5105/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>33</start>
<end>42</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Challenges for Toxic Comment Classification: An In-Depth Error Analysis
%A van Aken, Betty
%A Risch, Julian
%A Krestel, Ralf
%A Löser, Alexander
%Y Fišer, Darja
%Y Huang, Ruihong
%Y Prabhakaran, Vinodkumar
%Y Voigt, Rob
%Y Waseem, Zeerak
%Y Wernimont, Jacqueline
%S Proceedings of the 2nd Workshop on Abusive Language Online (ALW2)
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F van-aken-etal-2018-challenges
%X Toxic comment classification has become an active research field with many recently proposed approaches. However, while these approaches address some of the task‘s challenges others still remain unsolved and directions for further research are needed. To this end, we compare different deep learning and shallow approaches on a new, large comment dataset and propose an ensemble that outperforms all individual models. Further, we validate our findings on a second dataset. The results of the ensemble enable us to perform an extensive error analysis, which reveals open challenges for state-of-the-art methods and directions towards pending future research. These challenges include missing paradigmatic context and inconsistent dataset labels.
%R 10.18653/v1/W18-5105
%U https://aclanthology.org/W18-5105/
%U https://doi.org/10.18653/v1/W18-5105
%P 33-42
Markdown (Informal)
[Challenges for Toxic Comment Classification: An In-Depth Error Analysis](https://aclanthology.org/W18-5105/) (van Aken et al., ALW 2018)
ACL