@inproceedings{reisert-etal-2018-feasible,
title = "Feasible Annotation Scheme for Capturing Policy Argument Reasoning using Argument Templates",
author = "Reisert, Paul and
Inoue, Naoya and
Kuribayashi, Tatsuki and
Inui, Kentaro",
editor = "Slonim, Noam and
Aharonov, Ranit",
booktitle = "Proceedings of the 5th Workshop on Argument Mining",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5210",
doi = "10.18653/v1/W18-5210",
pages = "79--89",
abstract = "Most of the existing works on argument mining cast the problem of argumentative structure identification as classification tasks (e.g. attack-support relations, stance, explicit premise/claim). This paper goes a step further by addressing the task of automatically identifying reasoning patterns of arguments using predefined templates, which is called \textit{argument template (AT) instantiation}. The contributions of this work are three-fold. First, we develop a simple, yet expressive set of easily annotatable ATs that can represent a majority of writer{'}s reasoning for texts with diverse policy topics while maintaining the computational feasibility of the task. Second, we create a small, but highly reliable annotated corpus of instantiated ATs on top of reliably annotated support and attack relations and conduct an annotation study. Third, we formulate the task of AT instantiation as structured prediction constrained by a feasible set of templates. Our evaluation demonstrates that we can annotate ATs with a reasonably high inter-annotator agreement, and the use of template-constrained inference is useful for instantiating ATs with only partial reasoning comprehension clues.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="reisert-etal-2018-feasible">
<titleInfo>
<title>Feasible Annotation Scheme for Capturing Policy Argument Reasoning using Argument Templates</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Reisert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Naoya</namePart>
<namePart type="family">Inoue</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tatsuki</namePart>
<namePart type="family">Kuribayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kentaro</namePart>
<namePart type="family">Inui</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 5th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Slonim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ranit</namePart>
<namePart type="family">Aharonov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Most of the existing works on argument mining cast the problem of argumentative structure identification as classification tasks (e.g. attack-support relations, stance, explicit premise/claim). This paper goes a step further by addressing the task of automatically identifying reasoning patterns of arguments using predefined templates, which is called argument template (AT) instantiation. The contributions of this work are three-fold. First, we develop a simple, yet expressive set of easily annotatable ATs that can represent a majority of writer’s reasoning for texts with diverse policy topics while maintaining the computational feasibility of the task. Second, we create a small, but highly reliable annotated corpus of instantiated ATs on top of reliably annotated support and attack relations and conduct an annotation study. Third, we formulate the task of AT instantiation as structured prediction constrained by a feasible set of templates. Our evaluation demonstrates that we can annotate ATs with a reasonably high inter-annotator agreement, and the use of template-constrained inference is useful for instantiating ATs with only partial reasoning comprehension clues.</abstract>
<identifier type="citekey">reisert-etal-2018-feasible</identifier>
<identifier type="doi">10.18653/v1/W18-5210</identifier>
<location>
<url>https://aclanthology.org/W18-5210</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>79</start>
<end>89</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Feasible Annotation Scheme for Capturing Policy Argument Reasoning using Argument Templates
%A Reisert, Paul
%A Inoue, Naoya
%A Kuribayashi, Tatsuki
%A Inui, Kentaro
%Y Slonim, Noam
%Y Aharonov, Ranit
%S Proceedings of the 5th Workshop on Argument Mining
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F reisert-etal-2018-feasible
%X Most of the existing works on argument mining cast the problem of argumentative structure identification as classification tasks (e.g. attack-support relations, stance, explicit premise/claim). This paper goes a step further by addressing the task of automatically identifying reasoning patterns of arguments using predefined templates, which is called argument template (AT) instantiation. The contributions of this work are three-fold. First, we develop a simple, yet expressive set of easily annotatable ATs that can represent a majority of writer’s reasoning for texts with diverse policy topics while maintaining the computational feasibility of the task. Second, we create a small, but highly reliable annotated corpus of instantiated ATs on top of reliably annotated support and attack relations and conduct an annotation study. Third, we formulate the task of AT instantiation as structured prediction constrained by a feasible set of templates. Our evaluation demonstrates that we can annotate ATs with a reasonably high inter-annotator agreement, and the use of template-constrained inference is useful for instantiating ATs with only partial reasoning comprehension clues.
%R 10.18653/v1/W18-5210
%U https://aclanthology.org/W18-5210
%U https://doi.org/10.18653/v1/W18-5210
%P 79-89
Markdown (Informal)
[Feasible Annotation Scheme for Capturing Policy Argument Reasoning using Argument Templates](https://aclanthology.org/W18-5210) (Reisert et al., ArgMining 2018)
ACL