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Abstract

This paper presents the results of the sixth edi-
tion of the BioASQ challenge. The BioASQ
challenge aims at the promotion of systems
and methodologies through the organization of
a challenge on two tasks: semantic indexing
and question answering. In total, 26 teams
with more than 90 systems participated in this
year’s challenge. As in previous years, the best
systems were able to outperform the strong
baselines. This suggests that state-of-the-art
systems are continuously improving, pushing
the frontier of research.

1 Introduction

The aim of this paper is twofold. First, we aim
to give an overview of the data issued during the
BioASQ challenge in 2018. In addition, we aim to
present the systems that participated in the chal-
lenge and evaluate their performance. To achieve
these goals, we begin by giving a brief overview of
the tasks, which took place from February to May
2018, and the challenge’s data. Thereafter, we pro-
vide an overview of the systems that participated
in the challenge. Detailed descriptions of some
of the systems are given in workshop proceedings.
The evaluation of the systems, which was carried
out using state-of-the-art measures or manual as-
sessment, is the last focal point of this paper, with
remarks regarding the results of each task. The
conclusions sum up this year’s challenge.

2 Overview of the Tasks

The challenge comprised two tasks: (1) a large-
scale semantic indexing task (Task 6a) and (2) a
question answering task (Task 6b).

2.1 Large-scale semantic indexing - 6a
In Task 6a the goal is to classify documents from
the PubMed digital library into concepts of the

MeSH hierarchy. Here, new PubMed articles that
are not yet annotated by MEDLINE indexers are
collected and used as test sets for the evaluation of
the participating systems. In contrast to previous
years, articles from all journals were included in
the test data sets of task 6a. As soon as the an-
notations are available from the MEDLINE index-
ers, the performance of each system is calculated
using standard flat information retrieval measures,
as well as, hierarchical ones. As in previous years,
an on-line and large-scale scenario was provided,
dividing the task into three independent batches of
5 weekly test sets each. Participants had 21 hours
to provide their answers for each test set. Table
1 shows the number of articles in each test set of
each batch of the challenge. 13,486,072 articles
with 12.69 labels per article, on average, were pro-
vided as training data to the participants.

2.2 Biomedical semantic QA - 6b

The goal of Task 6b was to provide a large-scale
question answering challenge where the systems
had to cope with all stages of a question answer-
ing task for four types of biomedical questions:
yes/no, factoid, list and summary questions (Ba-
likas et al., 2013). As in previous years, the task
comprised two phases: In phase A, BioASQ re-
leased 100 questions and participants were asked
to respond with relevant elements from specific
resources, including relevant MEDLINE articles,
relevant snippets extracted from the articles, rele-
vant concepts and relevant RDF triples. In phase
B, the released questions were enhanced with rel-
evant articles and snippets selected manually and
the participants had to respond with exact answers,
as well as with summaries in natural language
(dubbed ideal answers). The task was split into
five independent batches and the two phases for
each batch were run with a time gap of 24 hours.
In each phase, the participants received 100 ques-
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Batch Articles Annotated
Articles

Labels
per

Article

1

7,240 6,639 11.67
7,678 7,499 12.95
10,488 10,319 13.04
6,225 6,073 12.32
6,617 6,486 12.96

Total 38,248 37,016 12.65

2

6,239 6,118 12.51
7,152 6,803 12.75
7,113 6,575 12.75
5,833 5,412 13.00
7,379 6,606 12.65

Total 33,716 31,514 12.73

3

6,469 5,768 12.58
6,544 5,501 12.86
6,743 5,467 12.67
8,487 5,615 12.70
7,478 4,038 12.63

Total 35,721 26,389 12.69

Table 1: Statistics on test datasets for Task 6a.

tions and had 24 hours to submit their answers.
Table 2 presents the statistics of the training and
test data provided to the participants. The evalua-
tion included five test batches.

Batch Size Documents Snippets
Train 2,251 12.01 14.72
Test 1 100 4.06 6.02
Test 2 100 3.77 5.03
Test 3 100 3.97 4.80
Test 4 100 3.39 4.03
Test 5 100 3.94 5.07
Total 2,751 10.52 12.95

Table 2: Statistics on the training and test datasets of
Task 6b. All the numbers for the documents and snip-
pets refer to averages.

3 Overview of Participants

3.1 Task 6a
For this task, 11 teams participated and results
from 42 different systems were submitted. In the
following paragraphs we describe those systems
for which a description was available, stressing
their key characteristics. An overview of the sys-
tems and their approaches can be seen in Table 3.

The “SNOKE” system variants were developed

System Approach

AttentionMeSH
RNN, w2v, attention

scheme

AUTH
d2v, tf-idf, LLDA,
SVM, ensembles

DeepMesh d2v, tf-idf, MESHlabeler

Iria
bigrams, Luchene Index,

k-NN, ensembles,
UIMA ConceptMapper

SNOKE
search engine, UIMA

ConceptMapper

Table 3: Systems and approaches for Task 6a. Systems
for which no description was available at the time of
writing are omitted.

as an UIMA (Tanenblatt et al., 2010) text and
data mining workflow, combined with a hetero-
geneous database architecture, where different
search strategies were adopted to automatically se-
lect probable MeSH terms. More specifically, the
system is based on the ZB MED Knowledge Envi-
ronment (Müller et al., 2017), while also utilizing
the Snowball Stemmer (Agichtein and Gravano,
2000), to find matches between MeSH terms and
words in the title and abstract of each target docu-
ment.

The “AttentionMeSH” systems utilize deep
learning and attention mechanisms which enable
the models to associate textual evidence with an-
notations, thus providing interpretability at the
word level. Firstly, they use a bidirectional gated
recurrent unit to derive word representations with
contextual information (Cho et al., 2014), to repre-
sent each document. At the same time, all MeSH
terms are embedded using a technique that takes
into account co-occuring MeSH terms in textu-
ally similar articles and finally an attention ma-
trix (Mullenbach et al., 2018) is created based on
the MeSH and word representations, leading to
MeSH-specific article representations. This pro-
cedure allows the model to provide local interpre-
tations of the predicted MeSH terms in relation
to words of a specific article, raising the interest-
ing subject of how explanations of an automatic
MeSH indexer could further help human annota-
tors in this task.

Other participating systems, including the
“DeepMeSH” systems (Peng et al., 2016), the
systems of the “AUTH” team (Papagiannopoulou
et al., 2016) and the “Iria” systems (Ribadas-Pena
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et al., 2015) are based on the same techniques used
by theirs systems for the previous version of the
challenge which are summarized in Table 3 and
described in the corresponding challenge overview
(Nentidis et al., 2017). Similarly to the previous
year, two systems developed by the National Li-
brary of Medicine (NLM) to assist the indexers
in the annotation of MEDLINE articles, served
as baselines for the semantic indexing task of the
challenge. The Medical Text Indexer (MTI) (Mork
et al., 2014) with some enchantments introduced
in (Zavorin et al., 2016) and an extension of it, in-
corporating features of the winning system of the
first BioASQ challenge (Tsoumakas et al., 2013).

3.2 Task 6b

The question answering task was tackled by 50
different systems, developed by 15 teams. In the
first phase, which concerns the retrieval of infor-
mation required to answer a question, 9 teams
with 27 systems participated. In the second phase,
where teams are requested to submit exact and
ideal answers, 10 teams with 27 different systems
participated. Four of the teams participated in
both phases. An overview of the technologies em-
ployed by each team can be seen in Table 4.

The “AUEB” team that participated only in
Phase A, used novel extensions of deep learning
models for retrieving question-relevant documents
and snippets. Firstly, they pre-trained word em-
beddings (Mikolov et al., 2013) on a very large
collection of articles from MEDLINE/PubMed,
while also implementing some pre-processing
steps (stop-word removal, stemming (Krovetz,
1993), tokenization etc.). Then, for the document
retrieval task they focused on the PACRR model
of (Hui et al., 2017) and the DRMM model (Guo
et al., 2016), while for snippets retrieval they uti-
lized the ABCNN model (Yin et al., 2015). Along-
side the extensions made on these models, they
also deployed a clever post-processing scheme
for snippet retrieval, as well as a model for ini-
tial document-retrieval based on BM25 (Robert-
son and Jones, 1976) for efficiency purposes.

Another approach based on deep learning
methodologies for Phase A, focusing again on
document and snippet retrieval, was proposed by
the “MindLaB” team from the National University
of Colombia. While for the document retrieval
they use the BM25 model and ElasticSearch for
efficiency, they train a Convolutional Neural Net-

Systems Phase Approach

Olelo A, B
SRL toolkits (BioKIT,
BioSmile, PathLSTM)

AUTH A, B
MetaMap, LingPipe,

Lucene Index, Stanford
Parser

AUEB A
BM25, w2v , DL

(PACRR, DRMM,
ABCNN)

USTB A
Sequential Dependence

Models, Ensembles

MindLab A
ElasticSearch, BM25,
POS-Tags, w2v, DL

(CNN)

MQU B
DL (LSTM), w2v,
Regression models,

Reinforcement Learning

Oaqa B
Maximum Margin

Relevance, w2v, Block
Ordering, ILP

LabZhu B
PubTator, Standford
POS tool, ranking

UNCC B
Metamap, Lexical

Chaining

L2PS B
SQUAD, DRQA (RNN,

LSTM), GloVe

Table 4: Systems and approaches for Task 6b. Systems
for which no information was available at the time of
writing are omitted.

work (CNN) for snippet retrieval. As in the previ-
ous approach, they utilized a very large collection
of PubMed Articles to train the CNN with sim-
ilarity matrices of question-answer pairs. More
specifically, they deploy similar pre-processing
steps (tokenization, lowercasing, skip-gram em-
beddings (Moen and Ananiadou, 2013)) for the
question and the document texts, however they
also apply Part of Speech tagging to extract syn-
tactical information regarding the terms. Based on
the idea that not all terms are equally informative
(Dong et al., 2015), they deploy a salience weight-
ing scheme focusing on verbs, nouns and adjec-
tives. Another interesting extension is the way fi-
nal rankings of the snippets are generated based on
a pseudo-relevance-feedback re-ranking step (Rie-
zler et al., 2007).

In Phase B, the Macquarie University (“MQU”)
team focused on ideal answers and explored ideas
of reinforcement learning on deep learning mod-
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els. Extending their previous work (Molla, 2017),
they implemented different models under a regres-
sion setting for finding similar sentences to a ques-
tion, based on the corresponding word2vec em-
beddings of the question-sentence pairs. They
also experimented with different ways of utiliz-
ing these embeddings, notably using a bidirec-
tional Recurrent Neural Networks with LSTM
cells (Hochreiter and Schmidhuber, 1997) to equip
the model with knowledge regarding the sentence
position. Moreover, they also run interesting ex-
periments using reinforcement learning towards
the ROUGE score of the ideal answers, based on
their previous work (Mollá-Aliod, 2017), but the
results did not advocate for the use of such mod-
els.

The Carnegie Mellon University team
(“OAQA”), focused also on ideal answer
generation, building upon previous versions
of the “OAQA” system (Chandu et al., 2017).
They experimented with ways to improve the
generated answer by extracting the most relevant
non-redundant sentences from multiple docu-
ments and then re-ordering and fusing them to
make the resulting text more human-readable
and coherent. To this end, they tried different
ordering algorithms for sentences and also made
various improvements in different stages of
the candidate sentences expansion, fusion and
filtering procedure that was already used by their
model. Among the notable additions is the use of
an Integer Linear Program (ILP) module that is
capable of fusing repeated content and simplify-
ing complicated sentences, thus improving human
readability.

Another system deployed by the same team
focuses on answer generation using a knowl-
edge graph and a neural learning-to-rank ap-
proach, combined with different summarization
techniques. One of the novelties introduced is
the creation of an ontology-based retrieval module
for relevant snippets, through the relation extrac-
tion between biomedical entities found in the ab-
stracts’ texts (Abacha and Zweigenbaum, 2015).
Also, different learning-to-rank approaches were
explored (Qin et al., 2010; Cao et al., 2006, 2007)
alongside both extractive (Allahyari et al., 2017)
and abstractive (See et al., 2017) summarization
techniques for the ideal answers generation.

An interesting approach comes from the
“L2PS” team where they use an open-domain

model (Chen et al., 2017), pre-trained on the
SQUAD (Rajpurkar et al., 2016) dataset, and fine-
tuned to the biomedical domain. An interesting
difference with other deep learning approaches is
the fact that the GloVe embeddings (Pennington
et al., 2014) were the best amongst the ones tried.
Moreover, they raise interesting questions regard-
ing the effects of non-normalized answers (syn-
onyms, abbreviations, multi-word answers) in the
evaluation of different systems.

The “UNCC” team participated in Phase B, de-
ploying lexical chaining techniques (Reeve et al.,
2006) for sentence similarity and ranking to ex-
tract summaries from related snippets and effi-
ciently fuse them in an ideal answer. They take ad-
vantage of the MetaMap tool (Aronson and Lang,
2010) for biomedical entity recognition and they
also present a way to extend their methodology to
factoid/list question answering in Phase A as well.

“Olelo” is one of the approaches that tackles
both phases of the question answering task. More
specifically, in Phase A Semantic Role Label-
ing (SRL) approaches for QA systems were uti-
lized. These focus on the automatic extraction
of predicate-argument structures (PAS) from both
questions and document text, aimed at finding se-
mantically related PAS between associated pairs.
For Phase B, the system is built on top of the SAP
HANA database and uses various NLP compo-
nents, such as question processing, document and
passage retrieval, answer processing and multi-
document summarization based on previous ap-
proaches (Schulze et al., 2016) to develop a com-
prehensive system that retrieves relevant informa-
tion and provides both exact and ideal answers for
biomedical questions.

Other systems, including the “USTB” (Jin et al.,
2017) and the “LabZhu” (Peng et al., 2015) sys-
tems employed the same techniques used by their
systems for the previous version of the challenge,
as summarized in Table 4 and described in the pre-
vious challenge overview (Nentidis et al., 2017).
In this challenge too, the open source OAQA sys-
tem proposed by (Yang et al., 2016) served as
baseline for phase B. The system which achieved
among the highest performances in previous ver-
sions of the challenge remains a strong base-
line for the exact answer generation task. The
system is developed based on the UIMA frame-
work. ClearNLP is employed for question and
snippet parsing. MetaMap, TmTool (Wei et al.,
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System Batch 1 Batch 2 Batch 3
MiF LCA-F MiF LCA-F MiF LCA-F

AttentionMeSH - - 12.75 13 10 12.875
AttentionMeSH2 - - 13.25 13.5 9.125 11.625
AttentionMeSH3 - - 11.875 12 8.625 10.625
AttentionMeSH4 - - 10.625 10.75 7.375 11.375
AttentionMeSH5 - - 9.875 11 7.25 11

DeepMeSH1 3.75 4.75 4 5 9.75 10.75
DeepMeSH2 1.875 1.875 2 2 7.25 7.5
DeepMeSH3 2.625 2.625 3 3 5.75 6
DeepMeSH4 1 1 1 1 7.25 7.75
Default MTI 4.875 3.75 5 3.75 10.5 5.25

iria-1 9.75 9.75 13 13 15.75 15.75
iria-2 - - - - 18.75 18.75

MeSHmallow-1 - - - - 24 24
MeSHmallow-2 - - - - 24 24
MeSHmallow-3 - - - - 24 24

MTI First Line Index 6 6 8.25 7.5 13.75 9.75
Semantic NoSQL KE 1 - - 16.25 16 - -
Semantic NoSQL KE 2 - - 15.75 17 - -
Semantic NoSQL KE 3 - - 19.5 20 - -
Semantic NoSQL KE 4 - - 17.5 18 - -
Semantic NoSQL KE 5 - - 18.5 19 - -
UMass Amherst T2T - - - - 19.25 19.25

xgx 8.5 8.5 5.75 6 5.25 4
xgx0 - - 8.5 7 3.25 2
xgx1 - - - - 4.5 2.375
xgx2 - - - - 3.5 3.875
xgx3 - - - - 4.75 4.25

Table 5: Average system ranks across the batches of the Task 6a. A hyphenation symbol (-) is used whenever the
system participated in fewer than 4 tests in the batch. Systems with fewer than 4 participations in all batches are
omitted.

2016), C-Value and LingPipe (Baldwin and Car-
penter, 2003) are used for concept identification
and UMLS Terminology Services (UTS) for con-
cept retrieval. The final steps include identification
of concept, document and snippet relevance, based
on classifier components and scoring, ranking and
reranking techniques.

4 Results

4.1 Task 6a
Each of the three batches of Task 6a were eval-
uated independently. The classification perfor-
mance of the systems were measured using flat
and hierarchical evaluation measures (Balikas
et al., 2013). The micro F-measure (MiF) and
the Lowest Common Ancestor F-measure (LCA-
F) were used to choose the winners for each batch
(Kosmopoulos et al., 2013).

According to (Demsar, 2006) the appropriate
way to compare multiple classification systems
over multiple datasets is based on their average
rank across all the datasets. On each dataset the
system with the best performance gets rank 1.0,
the second best rank 2.0 and so on. In case two

or more systems tie, they all receive the average
rank. Table 5 presents the average rank (according
to MiF and LCA-F) of each system over all the test
sets for the corresponding batches. Note, that the
average ranks are calculated for the 4 best results
of each system in the batch according to the rules
of the challenge.

The results in Task 6a show that in all test
batches and for both flat and hierarchical mea-
sures, some systems outperform the strong base-
lines. The “DeepMeSH” systems achieve the best
performance in the first two batches, outperformed
only by “xgx” systems in the third batch. More
detailed results can be found in the online results
page1. Comparison of these results with corre-
sponding system results from previous years re-
veals the improvement of both the baseline and
the top performing systems through the years of
the competition as shown in Figure 1.
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Figure 1: The micro f-measure achieved by systems across different years of the BioASQ challenge. For each test
set the micro F-measure is presented for the best performing system (Top) and the MTI, as well as the average
micro f-measure of all the participating systems (Avg).

System Mean
Precision Mean Recall Mean

F-measure MAP GMAP

aueb-nlp-5 0.2551 0.3412 0.2744 0.2314 0.0068
MindLab QA

Reloaded
0.1614 0.2657 0.1877 0.1344 0.0014

aueb-nlp-1 0.1384 0.2288 0.1563 0.1331 0.0046
aueb-nlp-3 0.1341 0.2263 0.1526 0.1294 0.0038
aueb-nlp-4 0.1325 0.2252 0.1519 0.1293 0.0038
aueb-nlp-2 0.1308 0.2204 0.1494 0.1262 0.0034

MindLab QA
System

0.1542 0.2754 0.1833 0.1156 0.0023

MindLab Red
Lions++

0.1406 0.2346 0.1636 0.1150 0.0013

MindLab QA
System ++

0.1325 0.2252 0.1559 0.1148 0.0001

testtext 0.1802 0.2331 0.1831 0.1124 0.0035

Table 6: Results for snippet retrieval in batch 3 of phase A of Task 6b. Only the top-10 systems are presented.

4.2 Task 6b

Phase A: For phase A and for each of the four
types of annotations: documents, concepts, snip-
pets and RDF triples, we rank the systems accord-
ing to the Mean Average Precision (MAP) mea-
sure. The final ranking for each batch is calculated
as the average of the individual rankings in the dif-
ferent categories. In Tables 6 and 7 some indica-
tive results from batch 3 are presented. Full results

1http://participants-area.bioasq.org/
results/6a/

are available in the online results page of Task 6b,
phase A2. These results are preliminary. The final
results for Task 6b, phase A will be available after
the manual assessment of the system responses.

Phase B: In phase B of Task 6b the systems
were asked to produce exact and ideal answers.
For ideal answers, the systems will eventually
be ranked according to manual evaluation by the
BioASQ experts (Balikas et al., 2013). Regarding

2http://participants-area.bioasq.org/
results/6b/phaseA/

http://participants-area.bioasq.org/results/6a/
http://participants-area.bioasq.org/results/6a/
http://participants-area.bioasq.org/results/6b/phaseA/
http://participants-area.bioasq.org/results/6b/phaseA/
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System Mean
Precision Mean Recall Mean

F-measure MAP GMAP

ustb prir2 0.1660 0.5674 0.2186 0.1281 0.0113
ustb prir3 0.2007 0.5609 0.2496 0.1259 0.0106

testtext 0.2007 0.5609 0.2496 0.1254 0.0106
ustb prir4 0.1620 0.5601 0.2136 0.1253 0.0105
ustb prir1 0.1700 0.5559 0.2203 0.1217 0.0100
aueb-nlp-2 0.1877 0.5352 0.2345 0.1147 0.0108
aueb-nlp-4 0.1877 0.5399 0.2345 0.1137 0.0106
aueb-nlp-3 0.1877 0.5429 0.2350 0.1135 0.0109
aueb-nlp-1 0.1877 0.5399 0.2345 0.1122 0.0101
sdm/rerank 0.1810 0.5422 0.2301 0.1061 0.0087

Table 7: Results for document retrieval in batch 3 of phase A of Task 6b. Only the top-10 systems are presented.

System Yes/No Factoid List

Acc. F1
Str.
Acc.

Len.
Acc.

MRR Prec. Rec. F1

Oaqa-5b 0.6667 0.6592 0.0606 0.2121 0.1313 0.0867 0.2722 0.1299
fa2 0.6296 0.3864 0.2121 0.3030 0.2475 0.2511 0.3889 0.2955
fa4 0.6296 0.3864 0.2121 0.3030 0.2434 0.2800 0.3889 0.3131
fa1 0.6296 0.3864 0.2121 0.2727 0.2374 0.1600 0.4333 0.2290
fa3 0.6296 0.3864 0.2121 0.2727 0.2283 0.1800 0.4778 0.2564

Lab Zhu ,FDU 0.6296 0.3864 0.0909 0.1212 0.1061 0.1657 0.2833 0.1663
MQ-1 0.6296 0.3864 - - - - - -
MQ-2 0.6296 0.3864 - - - - - -
MQ-3 0.6296 0.3864 - - - - - -
MQ-4 0.6296 0.3864 - - - - - -
MQ-5 0.6296 0.3864 - - - - - -

fa5 0.6296 0.5559 0.2121 0.3030 0.2434 0.2800 0.3889 0.3131
Lab Zhu,FDU 0.6296 0.3864 0.2121 0.2424 0.2273 0.2944 0.3444 0.2934
LabZhu,FDU 0.6296 0.3864 0.2424 0.2424 0.2424 0.4130 0.3389 0.3312

BioASQ Baseline 0.4815 0.475 0.0606 0.1212 0.0859 0.1774 0.3944 0.2236

Table 8: Results for batch 4 for exact answers in phase B of Task 6b.

exact answers3, the systems were ranked accord-
ing to accuracy, F1 score on prediction of yes an-
swer, F1 on prediction of no and macro-averaged
F1 score for the yes/no questions, mean reciprocal
rank (MRR) for the factoids and mean F-measure
for the list questions. Table 8 shows the results for
exact answers for the fourth batch of Task 6b. The
symbol (-) is used when systems don’t provide ex-
act answers for a particular type of question. The
full results of phase B of Task 6b are available on-
line4. These results are preliminary. The final re-
sults for Task 6b, phase B will be available after

3For summary questions, no exact answers are required
4http://participants-area.bioasq.org/

results/6b/phaseB/

the manual assessment of the system responses.

The results presented in Table 8 show that eval-
uation of system performance in the yes/no ques-
tions using the macro averaged F1 measure this
year is useful to identify systems that achieve good
performance regardless of any dataset imbalance
in the yes-no classes. In batch 4 for example, two
systems outperformed the strong baseline based
on previous versions of the OAQA system, which
is not clear considering only the accuracy. Re-
garding factoid and list questions, the performance
achieved by the systems indicates that there is
even more room for improvement in these types
of question.

http://participants-area.bioasq.org/results/6b/phaseB/
http://participants-area.bioasq.org/results/6b/phaseB/
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5 Conclusions

In this paper, an overview of the sixth BioASQ
challenge is presented. The challenge consisted
of two tasks: semantic indexing and question
answering. Overall, as in previous years, the
best systems were able to outperform the strong
baselines provided by the organizers. This sug-
gests that advances over the state of the art were
achieved through the BioASQ challenge but also
that the benchmark in itself is challenging. More-
over, a clear shift towards the use of systems that
incorporate ideas based on deep learning mod-
els can be seen, with respect to previous years.
Novel ideas have been tested and state-of-the-art
deep learning methodologies have been adapted to
biomedical question answering with great results.
Consequently, we believe that the challenge is suc-
cessfully pushing the research frontier in biomed-
ical information systems. In future editions of the
challenge, we aim to provide even more bench-
mark data derived from a community-driven ac-
quisition process.
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Hagelstein, and Thomas Gübitz. 2017. Livivo – the
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