@inproceedings{kamath-etal-2018-adaption,
title = "An Adaption of {BIOASQ} Question Answering dataset for Machine Reading systems by Manual Annotations of Answer Spans.",
author = "Kamath, Sanjay and
Grau, Brigitte and
Ma, Yue",
editor = "Kakadiaris, Ioannis A. and
Paliouras, George and
Krithara, Anastasia",
booktitle = "Proceedings of the 6th {B}io{ASQ} Workshop A challenge on large-scale biomedical semantic indexing and question answering",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5309",
doi = "10.18653/v1/W18-5309",
pages = "72--78",
abstract = "BIOASQ Task B Phase B challenge focuses on extracting answers from snippets for a given question. The dataset provided by the organizers contains answers, but not all their variants. Henceforth a manual annotation was performed to extract all forms of correct answers. This article shows the impact of using all occurrences of correct answers for training on the evaluation scores which are improved significantly.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kamath-etal-2018-adaption">
<titleInfo>
<title>An Adaption of BIOASQ Question Answering dataset for Machine Reading systems by Manual Annotations of Answer Spans.</title>
</titleInfo>
<name type="personal">
<namePart type="given">Sanjay</namePart>
<namePart type="family">Kamath</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Brigitte</namePart>
<namePart type="family">Grau</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yue</namePart>
<namePart type="family">Ma</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Kakadiaris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Paliouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Krithara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>BIOASQ Task B Phase B challenge focuses on extracting answers from snippets for a given question. The dataset provided by the organizers contains answers, but not all their variants. Henceforth a manual annotation was performed to extract all forms of correct answers. This article shows the impact of using all occurrences of correct answers for training on the evaluation scores which are improved significantly.</abstract>
<identifier type="citekey">kamath-etal-2018-adaption</identifier>
<identifier type="doi">10.18653/v1/W18-5309</identifier>
<location>
<url>https://aclanthology.org/W18-5309</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>72</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T An Adaption of BIOASQ Question Answering dataset for Machine Reading systems by Manual Annotations of Answer Spans.
%A Kamath, Sanjay
%A Grau, Brigitte
%A Ma, Yue
%Y Kakadiaris, Ioannis A.
%Y Paliouras, George
%Y Krithara, Anastasia
%S Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kamath-etal-2018-adaption
%X BIOASQ Task B Phase B challenge focuses on extracting answers from snippets for a given question. The dataset provided by the organizers contains answers, but not all their variants. Henceforth a manual annotation was performed to extract all forms of correct answers. This article shows the impact of using all occurrences of correct answers for training on the evaluation scores which are improved significantly.
%R 10.18653/v1/W18-5309
%U https://aclanthology.org/W18-5309
%U https://doi.org/10.18653/v1/W18-5309
%P 72-78
Markdown (Informal)
[An Adaption of BIOASQ Question Answering dataset for Machine Reading systems by Manual Annotations of Answer Spans.](https://aclanthology.org/W18-5309) (Kamath et al., BioASQ 2018)
ACL