@inproceedings{naresh-kumar-etal-2018-ontology,
title = "Ontology-Based Retrieval {\&} Neural Approaches for {B}io{ASQ} Ideal Answer Generation",
author = "Naresh Kumar, Ashwin and
Kesavamoorthy, Harini and
Das, Madhura and
Kalwad, Pramati and
Chandu, Khyathi and
Mitamura, Teruko and
Nyberg, Eric",
editor = "Kakadiaris, Ioannis A. and
Paliouras, George and
Krithara, Anastasia",
booktitle = "Proceedings of the 6th {B}io{ASQ} Workshop A challenge on large-scale biomedical semantic indexing and question answering",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5310",
doi = "10.18653/v1/W18-5310",
pages = "79--89",
abstract = "The ever-increasing magnitude of biomedical information sources makes it difficult and time-consuming for a human researcher to find the most relevant documents and pinpointed answers for a specific question or topic when using only a traditional search engine. Biomedical Question Answering systems automatically identify the most relevant documents and pinpointed answers, given an information need expressed as a natural language question. Generating a non-redundant, human-readable summary that satisfies the information need of a given biomedical question is the focus of the Ideal Answer Generation task, part of the BioASQ challenge. This paper presents a system for ideal answer generation (using ontology-based retrieval and a neural learning-to-rank approach, combined with extractive and abstractive summarization techniques) which achieved the highest ROUGE score of 0.659 on the BioASQ 5b batch 2 test.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naresh-kumar-etal-2018-ontology">
<titleInfo>
<title>Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ashwin</namePart>
<namePart type="family">Naresh Kumar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Harini</namePart>
<namePart type="family">Kesavamoorthy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Madhura</namePart>
<namePart type="family">Das</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pramati</namePart>
<namePart type="family">Kalwad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Khyathi</namePart>
<namePart type="family">Chandu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teruko</namePart>
<namePart type="family">Mitamura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Nyberg</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ioannis</namePart>
<namePart type="given">A</namePart>
<namePart type="family">Kakadiaris</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">George</namePart>
<namePart type="family">Paliouras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anastasia</namePart>
<namePart type="family">Krithara</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>The ever-increasing magnitude of biomedical information sources makes it difficult and time-consuming for a human researcher to find the most relevant documents and pinpointed answers for a specific question or topic when using only a traditional search engine. Biomedical Question Answering systems automatically identify the most relevant documents and pinpointed answers, given an information need expressed as a natural language question. Generating a non-redundant, human-readable summary that satisfies the information need of a given biomedical question is the focus of the Ideal Answer Generation task, part of the BioASQ challenge. This paper presents a system for ideal answer generation (using ontology-based retrieval and a neural learning-to-rank approach, combined with extractive and abstractive summarization techniques) which achieved the highest ROUGE score of 0.659 on the BioASQ 5b batch 2 test.</abstract>
<identifier type="citekey">naresh-kumar-etal-2018-ontology</identifier>
<identifier type="doi">10.18653/v1/W18-5310</identifier>
<location>
<url>https://aclanthology.org/W18-5310</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>79</start>
<end>89</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation
%A Naresh Kumar, Ashwin
%A Kesavamoorthy, Harini
%A Das, Madhura
%A Kalwad, Pramati
%A Chandu, Khyathi
%A Mitamura, Teruko
%A Nyberg, Eric
%Y Kakadiaris, Ioannis A.
%Y Paliouras, George
%Y Krithara, Anastasia
%S Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F naresh-kumar-etal-2018-ontology
%X The ever-increasing magnitude of biomedical information sources makes it difficult and time-consuming for a human researcher to find the most relevant documents and pinpointed answers for a specific question or topic when using only a traditional search engine. Biomedical Question Answering systems automatically identify the most relevant documents and pinpointed answers, given an information need expressed as a natural language question. Generating a non-redundant, human-readable summary that satisfies the information need of a given biomedical question is the focus of the Ideal Answer Generation task, part of the BioASQ challenge. This paper presents a system for ideal answer generation (using ontology-based retrieval and a neural learning-to-rank approach, combined with extractive and abstractive summarization techniques) which achieved the highest ROUGE score of 0.659 on the BioASQ 5b batch 2 test.
%R 10.18653/v1/W18-5310
%U https://aclanthology.org/W18-5310
%U https://doi.org/10.18653/v1/W18-5310
%P 79-89
Markdown (Informal)
[Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation](https://aclanthology.org/W18-5310) (Naresh Kumar et al., BioASQ 2018)
ACL
- Ashwin Naresh Kumar, Harini Kesavamoorthy, Madhura Das, Pramati Kalwad, Khyathi Chandu, Teruko Mitamura, and Eric Nyberg. 2018. Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation. In Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering, pages 79–89, Brussels, Belgium. Association for Computational Linguistics.