@inproceedings{naresh-kumar-etal-2018-ontology,
    title = "Ontology-Based Retrieval {\&} Neural Approaches for {B}io{ASQ} Ideal Answer Generation",
    author = "Naresh Kumar, Ashwin  and
      Kesavamoorthy, Harini  and
      Das, Madhura  and
      Kalwad, Pramati  and
      Chandu, Khyathi  and
      Mitamura, Teruko  and
      Nyberg, Eric",
    editor = "Kakadiaris, Ioannis A.  and
      Paliouras, George  and
      Krithara, Anastasia",
    booktitle = "Proceedings of the 6th {B}io{ASQ} Workshop A challenge on large-scale biomedical semantic indexing and question answering",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5310/",
    doi = "10.18653/v1/W18-5310",
    pages = "79--89",
    abstract = "The ever-increasing magnitude of biomedical information sources makes it difficult and time-consuming for a human researcher to find the most relevant documents and pinpointed answers for a specific question or topic when using only a traditional search engine. Biomedical Question Answering systems automatically identify the most relevant documents and pinpointed answers, given an information need expressed as a natural language question. Generating a non-redundant, human-readable summary that satisfies the information need of a given biomedical question is the focus of the Ideal Answer Generation task, part of the BioASQ challenge. This paper presents a system for ideal answer generation (using ontology-based retrieval and a neural learning-to-rank approach, combined with extractive and abstractive summarization techniques) which achieved the highest ROUGE score of 0.659 on the BioASQ 5b batch 2 test."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="naresh-kumar-etal-2018-ontology">
    <titleInfo>
        <title>Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Ashwin</namePart>
        <namePart type="family">Naresh Kumar</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Harini</namePart>
        <namePart type="family">Kesavamoorthy</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Madhura</namePart>
        <namePart type="family">Das</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Pramati</namePart>
        <namePart type="family">Kalwad</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Khyathi</namePart>
        <namePart type="family">Chandu</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Teruko</namePart>
        <namePart type="family">Mitamura</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Eric</namePart>
        <namePart type="family">Nyberg</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Ioannis</namePart>
            <namePart type="given">A</namePart>
            <namePart type="family">Kakadiaris</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">George</namePart>
            <namePart type="family">Paliouras</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Anastasia</namePart>
            <namePart type="family">Krithara</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>The ever-increasing magnitude of biomedical information sources makes it difficult and time-consuming for a human researcher to find the most relevant documents and pinpointed answers for a specific question or topic when using only a traditional search engine. Biomedical Question Answering systems automatically identify the most relevant documents and pinpointed answers, given an information need expressed as a natural language question. Generating a non-redundant, human-readable summary that satisfies the information need of a given biomedical question is the focus of the Ideal Answer Generation task, part of the BioASQ challenge. This paper presents a system for ideal answer generation (using ontology-based retrieval and a neural learning-to-rank approach, combined with extractive and abstractive summarization techniques) which achieved the highest ROUGE score of 0.659 on the BioASQ 5b batch 2 test.</abstract>
    <identifier type="citekey">naresh-kumar-etal-2018-ontology</identifier>
    <identifier type="doi">10.18653/v1/W18-5310</identifier>
    <location>
        <url>https://aclanthology.org/W18-5310/</url>
    </location>
    <part>
        <date>2018-11</date>
        <extent unit="page">
            <start>79</start>
            <end>89</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation
%A Naresh Kumar, Ashwin
%A Kesavamoorthy, Harini
%A Das, Madhura
%A Kalwad, Pramati
%A Chandu, Khyathi
%A Mitamura, Teruko
%A Nyberg, Eric
%Y Kakadiaris, Ioannis A.
%Y Paliouras, George
%Y Krithara, Anastasia
%S Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F naresh-kumar-etal-2018-ontology
%X The ever-increasing magnitude of biomedical information sources makes it difficult and time-consuming for a human researcher to find the most relevant documents and pinpointed answers for a specific question or topic when using only a traditional search engine. Biomedical Question Answering systems automatically identify the most relevant documents and pinpointed answers, given an information need expressed as a natural language question. Generating a non-redundant, human-readable summary that satisfies the information need of a given biomedical question is the focus of the Ideal Answer Generation task, part of the BioASQ challenge. This paper presents a system for ideal answer generation (using ontology-based retrieval and a neural learning-to-rank approach, combined with extractive and abstractive summarization techniques) which achieved the highest ROUGE score of 0.659 on the BioASQ 5b batch 2 test.
%R 10.18653/v1/W18-5310
%U https://aclanthology.org/W18-5310/
%U https://doi.org/10.18653/v1/W18-5310
%P 79-89
Markdown (Informal)
[Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation](https://aclanthology.org/W18-5310/) (Naresh Kumar et al., BioASQ 2018)
ACL
- Ashwin Naresh Kumar, Harini Kesavamoorthy, Madhura Das, Pramati Kalwad, Khyathi Chandu, Teruko Mitamura, and Eric Nyberg. 2018. Ontology-Based Retrieval & Neural Approaches for BioASQ Ideal Answer Generation. In Proceedings of the 6th BioASQ Workshop A challenge on large-scale biomedical semantic indexing and question answering, pages 79–89, Brussels, Belgium. Association for Computational Linguistics.