@inproceedings{jang-etal-2018-interpretable,
    title = "Interpretable Word Embedding Contextualization",
    author = "Jang, Kyoung-Rok  and
      Myaeng, Sung-Hyon  and
      Kim, Sang-Bum",
    editor = "Linzen, Tal  and
      Chrupa{\l}a, Grzegorz  and
      Alishahi, Afra",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {B}lackbox{NLP}: Analyzing and Interpreting Neural Networks for {NLP}",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5442/",
    doi = "10.18653/v1/W18-5442",
    pages = "341--343",
    abstract = "In this paper, we propose a method of calibrating a word embedding, so that the semantic it conveys becomes more relevant to the context. Our method is novel because the output shows clearly which senses that were originally presented in a target word embedding become stronger or weaker. This is possible by utilizing the technique of using sparse coding to recover senses that comprises a word embedding."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jang-etal-2018-interpretable">
    <titleInfo>
        <title>Interpretable Word Embedding Contextualization</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Kyoung-Rok</namePart>
        <namePart type="family">Jang</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sung-Hyon</namePart>
        <namePart type="family">Myaeng</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Sang-Bum</namePart>
        <namePart type="family">Kim</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Tal</namePart>
            <namePart type="family">Linzen</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Grzegorz</namePart>
            <namePart type="family">Chrupała</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Afra</namePart>
            <namePart type="family">Alishahi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>In this paper, we propose a method of calibrating a word embedding, so that the semantic it conveys becomes more relevant to the context. Our method is novel because the output shows clearly which senses that were originally presented in a target word embedding become stronger or weaker. This is possible by utilizing the technique of using sparse coding to recover senses that comprises a word embedding.</abstract>
    <identifier type="citekey">jang-etal-2018-interpretable</identifier>
    <identifier type="doi">10.18653/v1/W18-5442</identifier>
    <location>
        <url>https://aclanthology.org/W18-5442/</url>
    </location>
    <part>
        <date>2018-11</date>
        <extent unit="page">
            <start>341</start>
            <end>343</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Interpretable Word Embedding Contextualization
%A Jang, Kyoung-Rok
%A Myaeng, Sung-Hyon
%A Kim, Sang-Bum
%Y Linzen, Tal
%Y Chrupała, Grzegorz
%Y Alishahi, Afra
%S Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F jang-etal-2018-interpretable
%X In this paper, we propose a method of calibrating a word embedding, so that the semantic it conveys becomes more relevant to the context. Our method is novel because the output shows clearly which senses that were originally presented in a target word embedding become stronger or weaker. This is possible by utilizing the technique of using sparse coding to recover senses that comprises a word embedding.
%R 10.18653/v1/W18-5442
%U https://aclanthology.org/W18-5442/
%U https://doi.org/10.18653/v1/W18-5442
%P 341-343
Markdown (Informal)
[Interpretable Word Embedding Contextualization](https://aclanthology.org/W18-5442/) (Jang et al., EMNLP 2018)
ACL
- Kyoung-Rok Jang, Sung-Hyon Myaeng, and Sang-Bum Kim. 2018. Interpretable Word Embedding Contextualization. In Proceedings of the 2018 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP, pages 341–343, Brussels, Belgium. Association for Computational Linguistics.