@inproceedings{ghanem-etal-2018-stance,
title = "Stance Detection in Fake News A Combined Feature Representation",
author = "Ghanem, Bilal and
Rosso, Paolo and
Rangel, Francisco",
editor = "Thorne, James and
Vlachos, Andreas and
Cocarascu, Oana and
Christodoulopoulos, Christos and
Mittal, Arpit",
booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5510/",
doi = "10.18653/v1/W18-5510",
pages = "66--71",
abstract = "With the uncontrolled increasing of fake news and rumors over the Web, different approaches have been proposed to address the problem. In this paper, we present an approach that combines lexical, word embeddings and n-gram features to detect the stance in fake news. Our approach has been tested on the Fake News Challenge (FNC-1) dataset. Given a news title-article pair, the FNC-1 task aims at determining the relevance of the article and the title. Our proposed approach has achieved an accurate result (59.6 {\%} Macro F1) that is close to the state-of-the-art result with 0.013 difference using a simple feature representation. Furthermore, we have investigated the importance of different lexicons in the detection of the classification labels."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ghanem-etal-2018-stance">
<titleInfo>
<title>Stance Detection in Fake News A Combined Feature Representation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Bilal</namePart>
<namePart type="family">Ghanem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paolo</namePart>
<namePart type="family">Rosso</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Francisco</namePart>
<namePart type="family">Rangel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>With the uncontrolled increasing of fake news and rumors over the Web, different approaches have been proposed to address the problem. In this paper, we present an approach that combines lexical, word embeddings and n-gram features to detect the stance in fake news. Our approach has been tested on the Fake News Challenge (FNC-1) dataset. Given a news title-article pair, the FNC-1 task aims at determining the relevance of the article and the title. Our proposed approach has achieved an accurate result (59.6 % Macro F1) that is close to the state-of-the-art result with 0.013 difference using a simple feature representation. Furthermore, we have investigated the importance of different lexicons in the detection of the classification labels.</abstract>
<identifier type="citekey">ghanem-etal-2018-stance</identifier>
<identifier type="doi">10.18653/v1/W18-5510</identifier>
<location>
<url>https://aclanthology.org/W18-5510/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>66</start>
<end>71</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Stance Detection in Fake News A Combined Feature Representation
%A Ghanem, Bilal
%A Rosso, Paolo
%A Rangel, Francisco
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ghanem-etal-2018-stance
%X With the uncontrolled increasing of fake news and rumors over the Web, different approaches have been proposed to address the problem. In this paper, we present an approach that combines lexical, word embeddings and n-gram features to detect the stance in fake news. Our approach has been tested on the Fake News Challenge (FNC-1) dataset. Given a news title-article pair, the FNC-1 task aims at determining the relevance of the article and the title. Our proposed approach has achieved an accurate result (59.6 % Macro F1) that is close to the state-of-the-art result with 0.013 difference using a simple feature representation. Furthermore, we have investigated the importance of different lexicons in the detection of the classification labels.
%R 10.18653/v1/W18-5510
%U https://aclanthology.org/W18-5510/
%U https://doi.org/10.18653/v1/W18-5510
%P 66-71
Markdown (Informal)
[Stance Detection in Fake News A Combined Feature Representation](https://aclanthology.org/W18-5510/) (Ghanem et al., EMNLP 2018)
ACL