@inproceedings{yoneda-etal-2018-ucl,
title = "{UCL} Machine Reading Group: Four Factor Framework For Fact Finding ({H}exa{F})",
author = "Yoneda, Takuma and
Mitchell, Jeff and
Welbl, Johannes and
Stenetorp, Pontus and
Riedel, Sebastian",
editor = "Thorne, James and
Vlachos, Andreas and
Cocarascu, Oana and
Christodoulopoulos, Christos and
Mittal, Arpit",
booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5515",
doi = "10.18653/v1/W18-5515",
pages = "97--102",
abstract = "In this paper we describe our 2nd place FEVER shared-task system that achieved a FEVER score of 62.52{\%} on the provisional test set (without additional human evaluation), and 65.41{\%} on the development set. Our system is a four stage model consisting of document retrieval, sentence retrieval, natural language inference and aggregation. Retrieval is performed leveraging task-specific features, and then a natural language inference model takes each of the retrieved sentences paired with the claimed fact. The resulting predictions are aggregated across retrieved sentences with a Multi-Layer Perceptron, and re-ranked corresponding to the final prediction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yoneda-etal-2018-ucl">
<titleInfo>
<title>UCL Machine Reading Group: Four Factor Framework For Fact Finding (HexaF)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Takuma</namePart>
<namePart type="family">Yoneda</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeff</namePart>
<namePart type="family">Mitchell</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Johannes</namePart>
<namePart type="family">Welbl</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pontus</namePart>
<namePart type="family">Stenetorp</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Riedel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we describe our 2nd place FEVER shared-task system that achieved a FEVER score of 62.52% on the provisional test set (without additional human evaluation), and 65.41% on the development set. Our system is a four stage model consisting of document retrieval, sentence retrieval, natural language inference and aggregation. Retrieval is performed leveraging task-specific features, and then a natural language inference model takes each of the retrieved sentences paired with the claimed fact. The resulting predictions are aggregated across retrieved sentences with a Multi-Layer Perceptron, and re-ranked corresponding to the final prediction.</abstract>
<identifier type="citekey">yoneda-etal-2018-ucl</identifier>
<identifier type="doi">10.18653/v1/W18-5515</identifier>
<location>
<url>https://aclanthology.org/W18-5515</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>97</start>
<end>102</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T UCL Machine Reading Group: Four Factor Framework For Fact Finding (HexaF)
%A Yoneda, Takuma
%A Mitchell, Jeff
%A Welbl, Johannes
%A Stenetorp, Pontus
%A Riedel, Sebastian
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F yoneda-etal-2018-ucl
%X In this paper we describe our 2nd place FEVER shared-task system that achieved a FEVER score of 62.52% on the provisional test set (without additional human evaluation), and 65.41% on the development set. Our system is a four stage model consisting of document retrieval, sentence retrieval, natural language inference and aggregation. Retrieval is performed leveraging task-specific features, and then a natural language inference model takes each of the retrieved sentences paired with the claimed fact. The resulting predictions are aggregated across retrieved sentences with a Multi-Layer Perceptron, and re-ranked corresponding to the final prediction.
%R 10.18653/v1/W18-5515
%U https://aclanthology.org/W18-5515
%U https://doi.org/10.18653/v1/W18-5515
%P 97-102
Markdown (Informal)
[UCL Machine Reading Group: Four Factor Framework For Fact Finding (HexaF)](https://aclanthology.org/W18-5515) (Yoneda et al., EMNLP 2018)
ACL