@inproceedings{kowollik-aker-2018-uni,
title = "Uni-{DUE} Student Team: Tackling fact checking through decomposable attention neural network",
author = "Kowollik, Jan and
Aker, Ahmet",
editor = "Thorne, James and
Vlachos, Andreas and
Cocarascu, Oana and
Christodoulopoulos, Christos and
Mittal, Arpit",
booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5518",
doi = "10.18653/v1/W18-5518",
pages = "114--118",
abstract = "In this paper we present our system for the FEVER Challenge. The task of this challenge is to verify claims by extracting information from Wikipedia. Our system has two parts. In the first part it performs a search for candidate sentences by treating the claims as query. In the second part it filters out noise from these candidates and uses the remaining ones to decide whether they support or refute or entail not enough information to verify the claim. We show that this system achieves a FEVER score of 0.3927 on the FEVER shared task development data set which is a 25.5{\%} improvement over the baseline score.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kowollik-aker-2018-uni">
<titleInfo>
<title>Uni-DUE Student Team: Tackling fact checking through decomposable attention neural network</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Kowollik</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ahmet</namePart>
<namePart type="family">Aker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we present our system for the FEVER Challenge. The task of this challenge is to verify claims by extracting information from Wikipedia. Our system has two parts. In the first part it performs a search for candidate sentences by treating the claims as query. In the second part it filters out noise from these candidates and uses the remaining ones to decide whether they support or refute or entail not enough information to verify the claim. We show that this system achieves a FEVER score of 0.3927 on the FEVER shared task development data set which is a 25.5% improvement over the baseline score.</abstract>
<identifier type="citekey">kowollik-aker-2018-uni</identifier>
<identifier type="doi">10.18653/v1/W18-5518</identifier>
<location>
<url>https://aclanthology.org/W18-5518</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>114</start>
<end>118</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Uni-DUE Student Team: Tackling fact checking through decomposable attention neural network
%A Kowollik, Jan
%A Aker, Ahmet
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kowollik-aker-2018-uni
%X In this paper we present our system for the FEVER Challenge. The task of this challenge is to verify claims by extracting information from Wikipedia. Our system has two parts. In the first part it performs a search for candidate sentences by treating the claims as query. In the second part it filters out noise from these candidates and uses the remaining ones to decide whether they support or refute or entail not enough information to verify the claim. We show that this system achieves a FEVER score of 0.3927 on the FEVER shared task development data set which is a 25.5% improvement over the baseline score.
%R 10.18653/v1/W18-5518
%U https://aclanthology.org/W18-5518
%U https://doi.org/10.18653/v1/W18-5518
%P 114-118
Markdown (Informal)
[Uni-DUE Student Team: Tackling fact checking through decomposable attention neural network](https://aclanthology.org/W18-5518) (Kowollik & Aker, EMNLP 2018)
ACL