@inproceedings{taniguchi-etal-2018-integrating,
    title = "Integrating Entity Linking and Evidence Ranking for Fact Extraction and Verification",
    author = "Taniguchi, Motoki  and
      Taniguchi, Tomoki  and
      Takahashi, Takumi  and
      Miura, Yasuhide  and
      Ohkuma, Tomoko",
    editor = "Thorne, James  and
      Vlachos, Andreas  and
      Cocarascu, Oana  and
      Christodoulopoulos, Christos  and
      Mittal, Arpit",
    booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5520/",
    doi = "10.18653/v1/W18-5520",
    pages = "124--126",
    abstract = "We describe here our system and results on the FEVER shared task. We prepared a pipeline system which composes of a document selection, a sentence retrieval, and a recognizing textual entailment (RTE) components. A simple entity linking approach with text match is used as the document selection component, this component identifies relevant documents for a given claim by using mentioned entities as clues. The sentence retrieval component selects relevant sentences as candidate evidence from the documents based on TF-IDF. Finally, the RTE component selects evidence sentences by ranking the sentences and classifies the claim simultaneously. The experimental results show that our system achieved the FEVER score of 0.4016 and outperformed the official baseline system."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="taniguchi-etal-2018-integrating">
    <titleInfo>
        <title>Integrating Entity Linking and Evidence Ranking for Fact Extraction and Verification</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Motoki</namePart>
        <namePart type="family">Taniguchi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tomoki</namePart>
        <namePart type="family">Taniguchi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Takumi</namePart>
        <namePart type="family">Takahashi</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yasuhide</namePart>
        <namePart type="family">Miura</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Tomoko</namePart>
        <namePart type="family">Ohkuma</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">James</namePart>
            <namePart type="family">Thorne</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Andreas</namePart>
            <namePart type="family">Vlachos</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Oana</namePart>
            <namePart type="family">Cocarascu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Christos</namePart>
            <namePart type="family">Christodoulopoulos</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Arpit</namePart>
            <namePart type="family">Mittal</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>We describe here our system and results on the FEVER shared task. We prepared a pipeline system which composes of a document selection, a sentence retrieval, and a recognizing textual entailment (RTE) components. A simple entity linking approach with text match is used as the document selection component, this component identifies relevant documents for a given claim by using mentioned entities as clues. The sentence retrieval component selects relevant sentences as candidate evidence from the documents based on TF-IDF. Finally, the RTE component selects evidence sentences by ranking the sentences and classifies the claim simultaneously. The experimental results show that our system achieved the FEVER score of 0.4016 and outperformed the official baseline system.</abstract>
    <identifier type="citekey">taniguchi-etal-2018-integrating</identifier>
    <identifier type="doi">10.18653/v1/W18-5520</identifier>
    <location>
        <url>https://aclanthology.org/W18-5520/</url>
    </location>
    <part>
        <date>2018-11</date>
        <extent unit="page">
            <start>124</start>
            <end>126</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Integrating Entity Linking and Evidence Ranking for Fact Extraction and Verification
%A Taniguchi, Motoki
%A Taniguchi, Tomoki
%A Takahashi, Takumi
%A Miura, Yasuhide
%A Ohkuma, Tomoko
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F taniguchi-etal-2018-integrating
%X We describe here our system and results on the FEVER shared task. We prepared a pipeline system which composes of a document selection, a sentence retrieval, and a recognizing textual entailment (RTE) components. A simple entity linking approach with text match is used as the document selection component, this component identifies relevant documents for a given claim by using mentioned entities as clues. The sentence retrieval component selects relevant sentences as candidate evidence from the documents based on TF-IDF. Finally, the RTE component selects evidence sentences by ranking the sentences and classifies the claim simultaneously. The experimental results show that our system achieved the FEVER score of 0.4016 and outperformed the official baseline system.
%R 10.18653/v1/W18-5520
%U https://aclanthology.org/W18-5520/
%U https://doi.org/10.18653/v1/W18-5520
%P 124-126
Markdown (Informal)
[Integrating Entity Linking and Evidence Ranking for Fact Extraction and Verification](https://aclanthology.org/W18-5520/) (Taniguchi et al., EMNLP 2018)
ACL