@inproceedings{otto-2018-team,
title = "Team {GESIS} Cologne: An all in all sentence-based approach for {FEVER}",
author = "Otto, Wolfgang",
editor = "Thorne, James and
Vlachos, Andreas and
Cocarascu, Oana and
Christodoulopoulos, Christos and
Mittal, Arpit",
booktitle = "Proceedings of the First Workshop on Fact Extraction and {VER}ification ({FEVER})",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5524/",
doi = "10.18653/v1/W18-5524",
pages = "145--149",
abstract = "In this system description of our pipeline to participate at the Fever Shared Task, we describe our sentence-based approach. Throughout all steps of our pipeline, we regarded single sentences as our processing unit. In our IR-Component, we searched in the set of all possible Wikipedia introduction sentences without limiting sentences to a fixed number of relevant documents. In the entailment module, we judged every sentence separately and combined the result of the classifier for the top 5 sentences with the help of an ensemble classifier to make a judgment whether the truth of a statement can be derived from the given claim."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="otto-2018-team">
<titleInfo>
<title>Team GESIS Cologne: An all in all sentence-based approach for FEVER</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wolfgang</namePart>
<namePart type="family">Otto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)</title>
</titleInfo>
<name type="personal">
<namePart type="given">James</namePart>
<namePart type="family">Thorne</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andreas</namePart>
<namePart type="family">Vlachos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Oana</namePart>
<namePart type="family">Cocarascu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christos</namePart>
<namePart type="family">Christodoulopoulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Arpit</namePart>
<namePart type="family">Mittal</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this system description of our pipeline to participate at the Fever Shared Task, we describe our sentence-based approach. Throughout all steps of our pipeline, we regarded single sentences as our processing unit. In our IR-Component, we searched in the set of all possible Wikipedia introduction sentences without limiting sentences to a fixed number of relevant documents. In the entailment module, we judged every sentence separately and combined the result of the classifier for the top 5 sentences with the help of an ensemble classifier to make a judgment whether the truth of a statement can be derived from the given claim.</abstract>
<identifier type="citekey">otto-2018-team</identifier>
<identifier type="doi">10.18653/v1/W18-5524</identifier>
<location>
<url>https://aclanthology.org/W18-5524/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>145</start>
<end>149</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Team GESIS Cologne: An all in all sentence-based approach for FEVER
%A Otto, Wolfgang
%Y Thorne, James
%Y Vlachos, Andreas
%Y Cocarascu, Oana
%Y Christodoulopoulos, Christos
%Y Mittal, Arpit
%S Proceedings of the First Workshop on Fact Extraction and VERification (FEVER)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F otto-2018-team
%X In this system description of our pipeline to participate at the Fever Shared Task, we describe our sentence-based approach. Throughout all steps of our pipeline, we regarded single sentences as our processing unit. In our IR-Component, we searched in the set of all possible Wikipedia introduction sentences without limiting sentences to a fixed number of relevant documents. In the entailment module, we judged every sentence separately and combined the result of the classifier for the top 5 sentences with the help of an ensemble classifier to make a judgment whether the truth of a statement can be derived from the given claim.
%R 10.18653/v1/W18-5524
%U https://aclanthology.org/W18-5524/
%U https://doi.org/10.18653/v1/W18-5524
%P 145-149
Markdown (Informal)
[Team GESIS Cologne: An all in all sentence-based approach for FEVER](https://aclanthology.org/W18-5524/) (Otto, EMNLP 2018)
ACL