@inproceedings{kristianto-etal-2018-autonomous,
title = "Autonomous Sub-domain Modeling for Dialogue Policy with Hierarchical Deep Reinforcement Learning",
author = "Kristianto, Giovanni Yoko and
Zhang, Huiwen and
Tong, Bin and
Iwayama, Makoto and
Kobayashi, Yoshiyuki",
editor = "Chuklin, Aleksandr and
Dalton, Jeff and
Kiseleva, Julia and
Borisov, Alexey and
Burtsev, Mikhail",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {SCAI}: The 2nd International Workshop on Search-Oriented Conversational {AI}",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5702/",
doi = "10.18653/v1/W18-5702",
pages = "9--16",
abstract = "Solving composites tasks, which consist of several inherent sub-tasks, remains a challenge in the research area of dialogue. Current studies have tackled this issue by manually decomposing the composite tasks into several sub-domains. However, much human effort is inevitable. This paper proposes a dialogue framework that autonomously models meaningful sub-domains and learns the policy over them. Our experiments show that our framework outperforms the baseline without subdomains by 11{\%} in terms of success rate, and is competitive with that with manually defined sub-domains."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kristianto-etal-2018-autonomous">
<titleInfo>
<title>Autonomous Sub-domain Modeling for Dialogue Policy with Hierarchical Deep Reinforcement Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Giovanni</namePart>
<namePart type="given">Yoko</namePart>
<namePart type="family">Kristianto</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Huiwen</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bin</namePart>
<namePart type="family">Tong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Makoto</namePart>
<namePart type="family">Iwayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yoshiyuki</namePart>
<namePart type="family">Kobayashi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Chuklin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeff</namePart>
<namePart type="family">Dalton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Kiseleva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexey</namePart>
<namePart type="family">Borisov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Burtsev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Solving composites tasks, which consist of several inherent sub-tasks, remains a challenge in the research area of dialogue. Current studies have tackled this issue by manually decomposing the composite tasks into several sub-domains. However, much human effort is inevitable. This paper proposes a dialogue framework that autonomously models meaningful sub-domains and learns the policy over them. Our experiments show that our framework outperforms the baseline without subdomains by 11% in terms of success rate, and is competitive with that with manually defined sub-domains.</abstract>
<identifier type="citekey">kristianto-etal-2018-autonomous</identifier>
<identifier type="doi">10.18653/v1/W18-5702</identifier>
<location>
<url>https://aclanthology.org/W18-5702/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>9</start>
<end>16</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Autonomous Sub-domain Modeling for Dialogue Policy with Hierarchical Deep Reinforcement Learning
%A Kristianto, Giovanni Yoko
%A Zhang, Huiwen
%A Tong, Bin
%A Iwayama, Makoto
%A Kobayashi, Yoshiyuki
%Y Chuklin, Aleksandr
%Y Dalton, Jeff
%Y Kiseleva, Julia
%Y Borisov, Alexey
%Y Burtsev, Mikhail
%S Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F kristianto-etal-2018-autonomous
%X Solving composites tasks, which consist of several inherent sub-tasks, remains a challenge in the research area of dialogue. Current studies have tackled this issue by manually decomposing the composite tasks into several sub-domains. However, much human effort is inevitable. This paper proposes a dialogue framework that autonomously models meaningful sub-domains and learns the policy over them. Our experiments show that our framework outperforms the baseline without subdomains by 11% in terms of success rate, and is competitive with that with manually defined sub-domains.
%R 10.18653/v1/W18-5702
%U https://aclanthology.org/W18-5702/
%U https://doi.org/10.18653/v1/W18-5702
%P 9-16
Markdown (Informal)
[Autonomous Sub-domain Modeling for Dialogue Policy with Hierarchical Deep Reinforcement Learning](https://aclanthology.org/W18-5702/) (Kristianto et al., EMNLP 2018)
ACL