@inproceedings{louvan-magnini-2018-exploring,
title = "Exploring Named Entity Recognition As an Auxiliary Task for Slot Filling in Conversational Language Understanding",
author = "Louvan, Samuel and
Magnini, Bernardo",
editor = "Chuklin, Aleksandr and
Dalton, Jeff and
Kiseleva, Julia and
Borisov, Alexey and
Burtsev, Mikhail",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {SCAI}: The 2nd International Workshop on Search-Oriented Conversational {AI}",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5711/",
doi = "10.18653/v1/W18-5711",
pages = "74--80",
abstract = "Slot filling is a crucial task in the Natural Language Understanding (NLU) component of a dialogue system. Most approaches for this task rely solely on the domain-specific datasets for training. We propose a joint model of slot filling and Named Entity Recognition (NER) in a multi-task learning (MTL) setup. Our experiments on three slot filling datasets show that using NER as an auxiliary task improves slot filling performance and achieve competitive performance compared with state-of-the-art. In particular, NER is effective when supervised at the lower layer of the model. For low-resource scenarios, we found that MTL is effective for one dataset."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="louvan-magnini-2018-exploring">
<titleInfo>
<title>Exploring Named Entity Recognition As an Auxiliary Task for Slot Filling in Conversational Language Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Samuel</namePart>
<namePart type="family">Louvan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bernardo</namePart>
<namePart type="family">Magnini</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aleksandr</namePart>
<namePart type="family">Chuklin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeff</namePart>
<namePart type="family">Dalton</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Julia</namePart>
<namePart type="family">Kiseleva</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alexey</namePart>
<namePart type="family">Borisov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikhail</namePart>
<namePart type="family">Burtsev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Slot filling is a crucial task in the Natural Language Understanding (NLU) component of a dialogue system. Most approaches for this task rely solely on the domain-specific datasets for training. We propose a joint model of slot filling and Named Entity Recognition (NER) in a multi-task learning (MTL) setup. Our experiments on three slot filling datasets show that using NER as an auxiliary task improves slot filling performance and achieve competitive performance compared with state-of-the-art. In particular, NER is effective when supervised at the lower layer of the model. For low-resource scenarios, we found that MTL is effective for one dataset.</abstract>
<identifier type="citekey">louvan-magnini-2018-exploring</identifier>
<identifier type="doi">10.18653/v1/W18-5711</identifier>
<location>
<url>https://aclanthology.org/W18-5711/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>74</start>
<end>80</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Named Entity Recognition As an Auxiliary Task for Slot Filling in Conversational Language Understanding
%A Louvan, Samuel
%A Magnini, Bernardo
%Y Chuklin, Aleksandr
%Y Dalton, Jeff
%Y Kiseleva, Julia
%Y Borisov, Alexey
%Y Burtsev, Mikhail
%S Proceedings of the 2018 EMNLP Workshop SCAI: The 2nd International Workshop on Search-Oriented Conversational AI
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F louvan-magnini-2018-exploring
%X Slot filling is a crucial task in the Natural Language Understanding (NLU) component of a dialogue system. Most approaches for this task rely solely on the domain-specific datasets for training. We propose a joint model of slot filling and Named Entity Recognition (NER) in a multi-task learning (MTL) setup. Our experiments on three slot filling datasets show that using NER as an auxiliary task improves slot filling performance and achieve competitive performance compared with state-of-the-art. In particular, NER is effective when supervised at the lower layer of the model. For low-resource scenarios, we found that MTL is effective for one dataset.
%R 10.18653/v1/W18-5711
%U https://aclanthology.org/W18-5711/
%U https://doi.org/10.18653/v1/W18-5711
%P 74-80
Markdown (Informal)
[Exploring Named Entity Recognition As an Auxiliary Task for Slot Filling in Conversational Language Understanding](https://aclanthology.org/W18-5711/) (Louvan & Magnini, EMNLP 2018)
ACL