@inproceedings{pirina-coltekin-2018-identifying,
title = "Identifying Depression on {R}eddit: The Effect of Training Data",
author = {Pirina, Inna and
{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}},
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy and
Sarker, Abeed and
Paul, Michael",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {SMM}4{H}: The 3rd Social Media Mining for Health Applications Workshop {\&} Shared Task",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5903",
doi = "10.18653/v1/W18-5903",
pages = "9--12",
abstract = "This paper presents a set of classification experiments for identifying depression in posts gathered from social media platforms. In addition to the data gathered previously by other researchers, we collect additional data from the social media platform Reddit. Our experiments show promising results for identifying depression from social media texts. More importantly, however, we show that the choice of corpora is crucial in identifying depression and can lead to misleading conclusions in case of poor choice of data.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="pirina-coltekin-2018-identifying">
<titleInfo>
<title>Identifying Depression on Reddit: The Effect of Training Data</title>
</titleInfo>
<name type="personal">
<namePart type="given">Inna</namePart>
<namePart type="family">Pirina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Çağrı</namePart>
<namePart type="family">Çöltekin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abeed</namePart>
<namePart type="family">Sarker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents a set of classification experiments for identifying depression in posts gathered from social media platforms. In addition to the data gathered previously by other researchers, we collect additional data from the social media platform Reddit. Our experiments show promising results for identifying depression from social media texts. More importantly, however, we show that the choice of corpora is crucial in identifying depression and can lead to misleading conclusions in case of poor choice of data.</abstract>
<identifier type="citekey">pirina-coltekin-2018-identifying</identifier>
<identifier type="doi">10.18653/v1/W18-5903</identifier>
<location>
<url>https://aclanthology.org/W18-5903</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>9</start>
<end>12</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Identifying Depression on Reddit: The Effect of Training Data
%A Pirina, Inna
%A Çöltekin, Çağrı
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%Y Sarker, Abeed
%Y Paul, Michael
%S Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F pirina-coltekin-2018-identifying
%X This paper presents a set of classification experiments for identifying depression in posts gathered from social media platforms. In addition to the data gathered previously by other researchers, we collect additional data from the social media platform Reddit. Our experiments show promising results for identifying depression from social media texts. More importantly, however, we show that the choice of corpora is crucial in identifying depression and can lead to misleading conclusions in case of poor choice of data.
%R 10.18653/v1/W18-5903
%U https://aclanthology.org/W18-5903
%U https://doi.org/10.18653/v1/W18-5903
%P 9-12
Markdown (Informal)
[Identifying Depression on Reddit: The Effect of Training Data](https://aclanthology.org/W18-5903) (Pirina & Çöltekin, EMNLP 2018)
ACL