@inproceedings{bobicev-sokolova-2018-thumbs,
title = "Thumbs Up and Down: Sentiment Analysis of Medical Online Forums",
author = "Bobicev, Victoria and
Sokolova, Marina",
editor = "Gonzalez-Hernandez, Graciela and
Weissenbacher, Davy and
Sarker, Abeed and
Paul, Michael",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop {SMM}4{H}: The 3rd Social Media Mining for Health Applications Workshop {\&} Shared Task",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-5906",
doi = "10.18653/v1/W18-5906",
pages = "22--26",
abstract = "In the current study, we apply multi-class and multi-label sentence classification to sentiment analysis of online medical forums. We aim to identify major health issues discussed in online social media and the types of sentiments those issues evoke. We use ontology of personal health information for Information Extraction and apply Machine Learning methods in automated recognition of the expressed sentiments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="bobicev-sokolova-2018-thumbs">
<titleInfo>
<title>Thumbs Up and Down: Sentiment Analysis of Medical Online Forums</title>
</titleInfo>
<name type="personal">
<namePart type="given">Victoria</namePart>
<namePart type="family">Bobicev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marina</namePart>
<namePart type="family">Sokolova</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task</title>
</titleInfo>
<name type="personal">
<namePart type="given">Graciela</namePart>
<namePart type="family">Gonzalez-Hernandez</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Davy</namePart>
<namePart type="family">Weissenbacher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Abeed</namePart>
<namePart type="family">Sarker</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Paul</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In the current study, we apply multi-class and multi-label sentence classification to sentiment analysis of online medical forums. We aim to identify major health issues discussed in online social media and the types of sentiments those issues evoke. We use ontology of personal health information for Information Extraction and apply Machine Learning methods in automated recognition of the expressed sentiments.</abstract>
<identifier type="citekey">bobicev-sokolova-2018-thumbs</identifier>
<identifier type="doi">10.18653/v1/W18-5906</identifier>
<location>
<url>https://aclanthology.org/W18-5906</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>22</start>
<end>26</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Thumbs Up and Down: Sentiment Analysis of Medical Online Forums
%A Bobicev, Victoria
%A Sokolova, Marina
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%Y Sarker, Abeed
%Y Paul, Michael
%S Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F bobicev-sokolova-2018-thumbs
%X In the current study, we apply multi-class and multi-label sentence classification to sentiment analysis of online medical forums. We aim to identify major health issues discussed in online social media and the types of sentiments those issues evoke. We use ontology of personal health information for Information Extraction and apply Machine Learning methods in automated recognition of the expressed sentiments.
%R 10.18653/v1/W18-5906
%U https://aclanthology.org/W18-5906
%U https://doi.org/10.18653/v1/W18-5906
%P 22-26
Markdown (Informal)
[Thumbs Up and Down: Sentiment Analysis of Medical Online Forums](https://aclanthology.org/W18-5906) (Bobicev & Sokolova, EMNLP 2018)
ACL