@inproceedings{coltekin-rama-2018-drug,
    title = "Drug-Use Identification from Tweets with Word and Character N-Grams",
    author = {{\c{C}}{\"o}ltekin, {\c{C}}a{\u{g}}r{\i}  and
      Rama, Taraka},
    editor = "Gonzalez-Hernandez, Graciela  and
      Weissenbacher, Davy  and
      Sarker, Abeed  and
      Paul, Michael",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop {SMM}4{H}: The 3rd Social Media Mining for Health Applications Workshop {\&} Shared Task",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-5914/",
    doi = "10.18653/v1/W18-5914",
    pages = "52--53",
    abstract = "This paper describes our systems in social media mining for health applications (SMM4H) shared task. We participated in all four tracks of the shared task using linear models with a combination of character and word n-gram features. We did not use any external data or domain specific information. The resulting systems achieved above-average scores among other participating systems, with F1-scores of 91.22, 46.8, 42.4, and 85.53 on tasks 1, 2, 3, and 4 respectively."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="coltekin-rama-2018-drug">
    <titleInfo>
        <title>Drug-Use Identification from Tweets with Word and Character N-Grams</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Çağrı</namePart>
        <namePart type="family">Çöltekin</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Taraka</namePart>
        <namePart type="family">Rama</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Graciela</namePart>
            <namePart type="family">Gonzalez-Hernandez</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Davy</namePart>
            <namePart type="family">Weissenbacher</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Abeed</namePart>
            <namePart type="family">Sarker</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Michael</namePart>
            <namePart type="family">Paul</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>This paper describes our systems in social media mining for health applications (SMM4H) shared task. We participated in all four tracks of the shared task using linear models with a combination of character and word n-gram features. We did not use any external data or domain specific information. The resulting systems achieved above-average scores among other participating systems, with F1-scores of 91.22, 46.8, 42.4, and 85.53 on tasks 1, 2, 3, and 4 respectively.</abstract>
    <identifier type="citekey">coltekin-rama-2018-drug</identifier>
    <identifier type="doi">10.18653/v1/W18-5914</identifier>
    <location>
        <url>https://aclanthology.org/W18-5914/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>52</start>
            <end>53</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Drug-Use Identification from Tweets with Word and Character N-Grams
%A Çöltekin, Çağrı
%A Rama, Taraka
%Y Gonzalez-Hernandez, Graciela
%Y Weissenbacher, Davy
%Y Sarker, Abeed
%Y Paul, Michael
%S Proceedings of the 2018 EMNLP Workshop SMM4H: The 3rd Social Media Mining for Health Applications Workshop & Shared Task
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F coltekin-rama-2018-drug
%X This paper describes our systems in social media mining for health applications (SMM4H) shared task. We participated in all four tracks of the shared task using linear models with a combination of character and word n-gram features. We did not use any external data or domain specific information. The resulting systems achieved above-average scores among other participating systems, with F1-scores of 91.22, 46.8, 42.4, and 85.53 on tasks 1, 2, 3, and 4 respectively.
%R 10.18653/v1/W18-5914
%U https://aclanthology.org/W18-5914/
%U https://doi.org/10.18653/v1/W18-5914
%P 52-53
Markdown (Informal)
[Drug-Use Identification from Tweets with Word and Character N-Grams](https://aclanthology.org/W18-5914/) (Çöltekin & Rama, EMNLP 2018)
ACL