@inproceedings{lacroix-2018-investigating,
title = "Investigating {NP}-Chunking with {U}niversal {D}ependencies for {E}nglish",
author = "Lacroix, Oph{\'e}lie",
editor = "de Marneffe, Marie-Catherine and
Lynn, Teresa and
Schuster, Sebastian",
booktitle = "Proceedings of the Second Workshop on Universal Dependencies ({UDW} 2018)",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6010/",
doi = "10.18653/v1/W18-6010",
pages = "85--90",
abstract = "Chunking is a pre-processing task generally dedicated to improving constituency parsing. In this paper, we want to show that universal dependency (UD) parsing can also leverage the information provided by the task of chunking even though annotated chunks are not provided with universal dependency trees. In particular, we introduce the possibility of deducing noun-phrase (NP) chunks from universal dependencies, focusing on English as a first example. We then demonstrate how the task of NP-chunking can benefit PoS-tagging in a multi-task learning setting {--} comparing two different strategies {--} and how it can be used as a feature for dependency parsing in order to learn enriched models."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lacroix-2018-investigating">
<titleInfo>
<title>Investigating NP-Chunking with Universal Dependencies for English</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ophélie</namePart>
<namePart type="family">Lacroix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)</title>
</titleInfo>
<name type="personal">
<namePart type="given">Marie-Catherine</namePart>
<namePart type="family">de Marneffe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Teresa</namePart>
<namePart type="family">Lynn</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sebastian</namePart>
<namePart type="family">Schuster</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Chunking is a pre-processing task generally dedicated to improving constituency parsing. In this paper, we want to show that universal dependency (UD) parsing can also leverage the information provided by the task of chunking even though annotated chunks are not provided with universal dependency trees. In particular, we introduce the possibility of deducing noun-phrase (NP) chunks from universal dependencies, focusing on English as a first example. We then demonstrate how the task of NP-chunking can benefit PoS-tagging in a multi-task learning setting – comparing two different strategies – and how it can be used as a feature for dependency parsing in order to learn enriched models.</abstract>
<identifier type="citekey">lacroix-2018-investigating</identifier>
<identifier type="doi">10.18653/v1/W18-6010</identifier>
<location>
<url>https://aclanthology.org/W18-6010/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>85</start>
<end>90</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Investigating NP-Chunking with Universal Dependencies for English
%A Lacroix, Ophélie
%Y de Marneffe, Marie-Catherine
%Y Lynn, Teresa
%Y Schuster, Sebastian
%S Proceedings of the Second Workshop on Universal Dependencies (UDW 2018)
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F lacroix-2018-investigating
%X Chunking is a pre-processing task generally dedicated to improving constituency parsing. In this paper, we want to show that universal dependency (UD) parsing can also leverage the information provided by the task of chunking even though annotated chunks are not provided with universal dependency trees. In particular, we introduce the possibility of deducing noun-phrase (NP) chunks from universal dependencies, focusing on English as a first example. We then demonstrate how the task of NP-chunking can benefit PoS-tagging in a multi-task learning setting – comparing two different strategies – and how it can be used as a feature for dependency parsing in order to learn enriched models.
%R 10.18653/v1/W18-6010
%U https://aclanthology.org/W18-6010/
%U https://doi.org/10.18653/v1/W18-6010
%P 85-90
Markdown (Informal)
[Investigating NP-Chunking with Universal Dependencies for English](https://aclanthology.org/W18-6010/) (Lacroix, UDW 2018)
ACL