@inproceedings{fu-barrio-2018-distantly,
title = "Distantly Supervised Attribute Detection from Reviews",
author = "Fu, Lisheng and
Barrio, Pablo",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop W-{NUT}: The 4th Workshop on Noisy User-generated Text",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6110",
doi = "10.18653/v1/W18-6110",
pages = "74--78",
abstract = "This work aims to detect specific attributes of a place (e.g., if it has a romantic atmosphere, or if it offers outdoor seating) from its user reviews via distant supervision: without direct annotation of the review text, we use the crowdsourced attribute labels of the place as labels of the review text. We then use review-level attention to pay more attention to those reviews related to the attributes. The experimental results show that our attention-based model predicts attributes for places from reviews with over 98{\%} accuracy. The attention weights assigned to each review provide explanation of capturing relevant reviews.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="fu-barrio-2018-distantly">
<titleInfo>
<title>Distantly Supervised Attribute Detection from Reviews</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lisheng</namePart>
<namePart type="family">Fu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Pablo</namePart>
<namePart type="family">Barrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This work aims to detect specific attributes of a place (e.g., if it has a romantic atmosphere, or if it offers outdoor seating) from its user reviews via distant supervision: without direct annotation of the review text, we use the crowdsourced attribute labels of the place as labels of the review text. We then use review-level attention to pay more attention to those reviews related to the attributes. The experimental results show that our attention-based model predicts attributes for places from reviews with over 98% accuracy. The attention weights assigned to each review provide explanation of capturing relevant reviews.</abstract>
<identifier type="citekey">fu-barrio-2018-distantly</identifier>
<identifier type="doi">10.18653/v1/W18-6110</identifier>
<location>
<url>https://aclanthology.org/W18-6110</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>74</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Distantly Supervised Attribute Detection from Reviews
%A Fu, Lisheng
%A Barrio, Pablo
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F fu-barrio-2018-distantly
%X This work aims to detect specific attributes of a place (e.g., if it has a romantic atmosphere, or if it offers outdoor seating) from its user reviews via distant supervision: without direct annotation of the review text, we use the crowdsourced attribute labels of the place as labels of the review text. We then use review-level attention to pay more attention to those reviews related to the attributes. The experimental results show that our attention-based model predicts attributes for places from reviews with over 98% accuracy. The attention weights assigned to each review provide explanation of capturing relevant reviews.
%R 10.18653/v1/W18-6110
%U https://aclanthology.org/W18-6110
%U https://doi.org/10.18653/v1/W18-6110
%P 74-78
Markdown (Informal)
[Distantly Supervised Attribute Detection from Reviews](https://aclanthology.org/W18-6110) (Fu & Barrio, WNUT 2018)
ACL