@inproceedings{balachandran-etal-2018-learning,
    title = "Learning to Define Terms in the Software Domain",
    author = "Balachandran, Vidhisha  and
      Rajagopal, Dheeraj  and
      Kanjirathinkal, Rose Catherine  and
      Cohen, William",
    editor = "Xu, Wei  and
      Ritter, Alan  and
      Baldwin, Tim  and
      Rahimi, Afshin",
    booktitle = "Proceedings of the 2018 {EMNLP} Workshop W-{NUT}: The 4th Workshop on Noisy User-generated Text",
    month = nov,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-6122/",
    doi = "10.18653/v1/W18-6122",
    pages = "164--172",
    abstract = "One way to test a person{'}s knowledge of a domain is to ask them to define domain-specific terms. Here, we investigate the task of automatically generating definitions of technical terms by reading text from the technical domain. Specifically, we learn definitions of software entities from a large corpus built from the user forum Stack Overflow. To model definitions, we train a language model and incorporate additional domain-specific information like word co-occurrence, and ontological category information. Our approach improves previous baselines by 2 BLEU points for the definition generation task. Our experiments also show the additional challenges associated with the task and the short-comings of language-model based architectures for definition generation."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="balachandran-etal-2018-learning">
    <titleInfo>
        <title>Learning to Define Terms in the Software Domain</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Vidhisha</namePart>
        <namePart type="family">Balachandran</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Dheeraj</namePart>
        <namePart type="family">Rajagopal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Rose</namePart>
        <namePart type="given">Catherine</namePart>
        <namePart type="family">Kanjirathinkal</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">William</namePart>
        <namePart type="family">Cohen</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-11</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Wei</namePart>
            <namePart type="family">Xu</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Alan</namePart>
            <namePart type="family">Ritter</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Tim</namePart>
            <namePart type="family">Baldwin</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Afshin</namePart>
            <namePart type="family">Rahimi</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>One way to test a person’s knowledge of a domain is to ask them to define domain-specific terms. Here, we investigate the task of automatically generating definitions of technical terms by reading text from the technical domain. Specifically, we learn definitions of software entities from a large corpus built from the user forum Stack Overflow. To model definitions, we train a language model and incorporate additional domain-specific information like word co-occurrence, and ontological category information. Our approach improves previous baselines by 2 BLEU points for the definition generation task. Our experiments also show the additional challenges associated with the task and the short-comings of language-model based architectures for definition generation.</abstract>
    <identifier type="citekey">balachandran-etal-2018-learning</identifier>
    <identifier type="doi">10.18653/v1/W18-6122</identifier>
    <location>
        <url>https://aclanthology.org/W18-6122/</url>
    </location>
    <part>
        <date>2018-11</date>
        <extent unit="page">
            <start>164</start>
            <end>172</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Learning to Define Terms in the Software Domain
%A Balachandran, Vidhisha
%A Rajagopal, Dheeraj
%A Kanjirathinkal, Rose Catherine
%A Cohen, William
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F balachandran-etal-2018-learning
%X One way to test a person’s knowledge of a domain is to ask them to define domain-specific terms. Here, we investigate the task of automatically generating definitions of technical terms by reading text from the technical domain. Specifically, we learn definitions of software entities from a large corpus built from the user forum Stack Overflow. To model definitions, we train a language model and incorporate additional domain-specific information like word co-occurrence, and ontological category information. Our approach improves previous baselines by 2 BLEU points for the definition generation task. Our experiments also show the additional challenges associated with the task and the short-comings of language-model based architectures for definition generation.
%R 10.18653/v1/W18-6122
%U https://aclanthology.org/W18-6122/
%U https://doi.org/10.18653/v1/W18-6122
%P 164-172
Markdown (Informal)
[Learning to Define Terms in the Software Domain](https://aclanthology.org/W18-6122/) (Balachandran et al., WNUT 2018)
ACL
- Vidhisha Balachandran, Dheeraj Rajagopal, Rose Catherine Kanjirathinkal, and William Cohen. 2018. Learning to Define Terms in the Software Domain. In Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text, pages 164–172, Brussels, Belgium. Association for Computational Linguistics.