@inproceedings{enghoff-etal-2018-low,
title = "Low-resource named entity recognition via multi-source projection: Not quite there yet?",
author = "Enghoff, Jan Vium and
Harrison, S{\o}ren and
Agi{\'c}, {\v{Z}}eljko",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop W-{NUT}: The 4th Workshop on Noisy User-generated Text",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6125/",
doi = "10.18653/v1/W18-6125",
pages = "195--201",
abstract = "Projecting linguistic annotations through word alignments is one of the most prevalent approaches to cross-lingual transfer learning. Conventional wisdom suggests that annotation projection {\textquotedblleft}just works{\textquotedblright} regardless of the task at hand. We carefully consider multi-source projection for named entity recognition. Our experiment with 17 languages shows that to detect named entities in true low-resource languages, annotation projection may not be the right way to move forward. On a more positive note, we also uncover the conditions that do favor named entity projection from multiple sources. We argue these are infeasible under noisy low-resource constraints."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="enghoff-etal-2018-low">
<titleInfo>
<title>Low-resource named entity recognition via multi-source projection: Not quite there yet?</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="given">Vium</namePart>
<namePart type="family">Enghoff</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Søren</namePart>
<namePart type="family">Harrison</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Željko</namePart>
<namePart type="family">Agić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Projecting linguistic annotations through word alignments is one of the most prevalent approaches to cross-lingual transfer learning. Conventional wisdom suggests that annotation projection “just works” regardless of the task at hand. We carefully consider multi-source projection for named entity recognition. Our experiment with 17 languages shows that to detect named entities in true low-resource languages, annotation projection may not be the right way to move forward. On a more positive note, we also uncover the conditions that do favor named entity projection from multiple sources. We argue these are infeasible under noisy low-resource constraints.</abstract>
<identifier type="citekey">enghoff-etal-2018-low</identifier>
<identifier type="doi">10.18653/v1/W18-6125</identifier>
<location>
<url>https://aclanthology.org/W18-6125/</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>195</start>
<end>201</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Low-resource named entity recognition via multi-source projection: Not quite there yet?
%A Enghoff, Jan Vium
%A Harrison, Søren
%A Agić, Željko
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F enghoff-etal-2018-low
%X Projecting linguistic annotations through word alignments is one of the most prevalent approaches to cross-lingual transfer learning. Conventional wisdom suggests that annotation projection “just works” regardless of the task at hand. We carefully consider multi-source projection for named entity recognition. Our experiment with 17 languages shows that to detect named entities in true low-resource languages, annotation projection may not be the right way to move forward. On a more positive note, we also uncover the conditions that do favor named entity projection from multiple sources. We argue these are infeasible under noisy low-resource constraints.
%R 10.18653/v1/W18-6125
%U https://aclanthology.org/W18-6125/
%U https://doi.org/10.18653/v1/W18-6125
%P 195-201
Markdown (Informal)
[Low-resource named entity recognition via multi-source projection: Not quite there yet?](https://aclanthology.org/W18-6125/) (Enghoff et al., WNUT 2018)
ACL