@inproceedings{hanson-simenstad-2018-combining,
title = "Combining Human and Machine Transcriptions on the Zooniverse Platform",
author = "Hanson, Daniel and
Simenstad, Andrea",
editor = "Xu, Wei and
Ritter, Alan and
Baldwin, Tim and
Rahimi, Afshin",
booktitle = "Proceedings of the 2018 {EMNLP} Workshop W-{NUT}: The 4th Workshop on Noisy User-generated Text",
month = nov,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6129",
doi = "10.18653/v1/W18-6129",
pages = "215--216",
abstract = "Transcribing handwritten documents to create fully searchable texts is an essential part of the archival process. Traditional text recognition methods, such as optical character recognition (OCR), do not work on handwritten documents due to their frequent noisiness and OCR{'}s need for individually segmented letters. Crowdsourcing and improved machine models are two modern methods for transcribing handwritten documents.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="hanson-simenstad-2018-combining">
<titleInfo>
<title>Combining Human and Machine Transcriptions on the Zooniverse Platform</title>
</titleInfo>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Hanson</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Andrea</namePart>
<namePart type="family">Simenstad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Wei</namePart>
<namePart type="family">Xu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Alan</namePart>
<namePart type="family">Ritter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tim</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afshin</namePart>
<namePart type="family">Rahimi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Transcribing handwritten documents to create fully searchable texts is an essential part of the archival process. Traditional text recognition methods, such as optical character recognition (OCR), do not work on handwritten documents due to their frequent noisiness and OCR’s need for individually segmented letters. Crowdsourcing and improved machine models are two modern methods for transcribing handwritten documents.</abstract>
<identifier type="citekey">hanson-simenstad-2018-combining</identifier>
<identifier type="doi">10.18653/v1/W18-6129</identifier>
<location>
<url>https://aclanthology.org/W18-6129</url>
</location>
<part>
<date>2018-11</date>
<extent unit="page">
<start>215</start>
<end>216</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Combining Human and Machine Transcriptions on the Zooniverse Platform
%A Hanson, Daniel
%A Simenstad, Andrea
%Y Xu, Wei
%Y Ritter, Alan
%Y Baldwin, Tim
%Y Rahimi, Afshin
%S Proceedings of the 2018 EMNLP Workshop W-NUT: The 4th Workshop on Noisy User-generated Text
%D 2018
%8 November
%I Association for Computational Linguistics
%C Brussels, Belgium
%F hanson-simenstad-2018-combining
%X Transcribing handwritten documents to create fully searchable texts is an essential part of the archival process. Traditional text recognition methods, such as optical character recognition (OCR), do not work on handwritten documents due to their frequent noisiness and OCR’s need for individually segmented letters. Crowdsourcing and improved machine models are two modern methods for transcribing handwritten documents.
%R 10.18653/v1/W18-6129
%U https://aclanthology.org/W18-6129
%U https://doi.org/10.18653/v1/W18-6129
%P 215-216
Markdown (Informal)
[Combining Human and Machine Transcriptions on the Zooniverse Platform](https://aclanthology.org/W18-6129) (Hanson & Simenstad, WNUT 2018)
ACL