@inproceedings{ilic-etal-2018-deep,
    title = "Deep contextualized word representations for detecting sarcasm and irony",
    author = "Ili{\'c}, Suzana  and
      Marrese-Taylor, Edison  and
      Balazs, Jorge  and
      Matsuo, Yutaka",
    editor = "Balahur, Alexandra  and
      Mohammad, Saif M.  and
      Hoste, Veronique  and
      Klinger, Roman",
    booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
    month = oct,
    year = "2018",
    address = "Brussels, Belgium",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/W18-6202/",
    doi = "10.18653/v1/W18-6202",
    pages = "2--7",
    abstract = "Predicting context-dependent and non-literal utterances like sarcastic and ironic expressions still remains a challenging task in NLP, as it goes beyond linguistic patterns, encompassing common sense and shared knowledge as crucial components. To capture complex morpho-syntactic features that can usually serve as indicators for irony or sarcasm across dynamic contexts, we propose a model that uses character-level vector representations of words, based on ELMo. We test our model on 7 different datasets derived from 3 different data sources, providing state-of-the-art performance in 6 of them, and otherwise offering competitive results."
}<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ilic-etal-2018-deep">
    <titleInfo>
        <title>Deep contextualized word representations for detecting sarcasm and irony</title>
    </titleInfo>
    <name type="personal">
        <namePart type="given">Suzana</namePart>
        <namePart type="family">Ilić</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Edison</namePart>
        <namePart type="family">Marrese-Taylor</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Jorge</namePart>
        <namePart type="family">Balazs</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <name type="personal">
        <namePart type="given">Yutaka</namePart>
        <namePart type="family">Matsuo</namePart>
        <role>
            <roleTerm authority="marcrelator" type="text">author</roleTerm>
        </role>
    </name>
    <originInfo>
        <dateIssued>2018-10</dateIssued>
    </originInfo>
    <typeOfResource>text</typeOfResource>
    <relatedItem type="host">
        <titleInfo>
            <title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
        </titleInfo>
        <name type="personal">
            <namePart type="given">Alexandra</namePart>
            <namePart type="family">Balahur</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Saif</namePart>
            <namePart type="given">M</namePart>
            <namePart type="family">Mohammad</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Veronique</namePart>
            <namePart type="family">Hoste</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <name type="personal">
            <namePart type="given">Roman</namePart>
            <namePart type="family">Klinger</namePart>
            <role>
                <roleTerm authority="marcrelator" type="text">editor</roleTerm>
            </role>
        </name>
        <originInfo>
            <publisher>Association for Computational Linguistics</publisher>
            <place>
                <placeTerm type="text">Brussels, Belgium</placeTerm>
            </place>
        </originInfo>
        <genre authority="marcgt">conference publication</genre>
    </relatedItem>
    <abstract>Predicting context-dependent and non-literal utterances like sarcastic and ironic expressions still remains a challenging task in NLP, as it goes beyond linguistic patterns, encompassing common sense and shared knowledge as crucial components. To capture complex morpho-syntactic features that can usually serve as indicators for irony or sarcasm across dynamic contexts, we propose a model that uses character-level vector representations of words, based on ELMo. We test our model on 7 different datasets derived from 3 different data sources, providing state-of-the-art performance in 6 of them, and otherwise offering competitive results.</abstract>
    <identifier type="citekey">ilic-etal-2018-deep</identifier>
    <identifier type="doi">10.18653/v1/W18-6202</identifier>
    <location>
        <url>https://aclanthology.org/W18-6202/</url>
    </location>
    <part>
        <date>2018-10</date>
        <extent unit="page">
            <start>2</start>
            <end>7</end>
        </extent>
    </part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Deep contextualized word representations for detecting sarcasm and irony
%A Ilić, Suzana
%A Marrese-Taylor, Edison
%A Balazs, Jorge
%A Matsuo, Yutaka
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F ilic-etal-2018-deep
%X Predicting context-dependent and non-literal utterances like sarcastic and ironic expressions still remains a challenging task in NLP, as it goes beyond linguistic patterns, encompassing common sense and shared knowledge as crucial components. To capture complex morpho-syntactic features that can usually serve as indicators for irony or sarcasm across dynamic contexts, we propose a model that uses character-level vector representations of words, based on ELMo. We test our model on 7 different datasets derived from 3 different data sources, providing state-of-the-art performance in 6 of them, and otherwise offering competitive results.
%R 10.18653/v1/W18-6202
%U https://aclanthology.org/W18-6202/
%U https://doi.org/10.18653/v1/W18-6202
%P 2-7
Markdown (Informal)
[Deep contextualized word representations for detecting sarcasm and irony](https://aclanthology.org/W18-6202/) (Ilić et al., WASSA 2018)
ACL