@inproceedings{sekulic-etal-2018-just,
title = "Not Just Depressed: Bipolar Disorder Prediction on {R}eddit",
author = "Sekulic, Ivan and
Gjurkovi{\'c}, Matej and
{\v{S}}najder, Jan",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6211",
doi = "10.18653/v1/W18-6211",
pages = "72--78",
abstract = "Bipolar disorder, an illness characterized by manic and depressive episodes, affects more than 60 million people worldwide. We present a preliminary study on bipolar disorder prediction from user-generated text on Reddit, which relies on users{'} self-reported labels. Our benchmark classifiers for bipolar disorder prediction outperform the baselines and reach accuracy and F1-scores of above 86{\%}. Feature analysis shows interesting differences in language use between users with bipolar disorders and the control group, including differences in the use of emotion-expressive words.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="sekulic-etal-2018-just">
<titleInfo>
<title>Not Just Depressed: Bipolar Disorder Prediction on Reddit</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Sekulic</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Matej</namePart>
<namePart type="family">Gjurković</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jan</namePart>
<namePart type="family">Šnajder</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Bipolar disorder, an illness characterized by manic and depressive episodes, affects more than 60 million people worldwide. We present a preliminary study on bipolar disorder prediction from user-generated text on Reddit, which relies on users’ self-reported labels. Our benchmark classifiers for bipolar disorder prediction outperform the baselines and reach accuracy and F1-scores of above 86%. Feature analysis shows interesting differences in language use between users with bipolar disorders and the control group, including differences in the use of emotion-expressive words.</abstract>
<identifier type="citekey">sekulic-etal-2018-just</identifier>
<identifier type="doi">10.18653/v1/W18-6211</identifier>
<location>
<url>https://aclanthology.org/W18-6211</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>72</start>
<end>78</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Not Just Depressed: Bipolar Disorder Prediction on Reddit
%A Sekulic, Ivan
%A Gjurković, Matej
%A Šnajder, Jan
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F sekulic-etal-2018-just
%X Bipolar disorder, an illness characterized by manic and depressive episodes, affects more than 60 million people worldwide. We present a preliminary study on bipolar disorder prediction from user-generated text on Reddit, which relies on users’ self-reported labels. Our benchmark classifiers for bipolar disorder prediction outperform the baselines and reach accuracy and F1-scores of above 86%. Feature analysis shows interesting differences in language use between users with bipolar disorders and the control group, including differences in the use of emotion-expressive words.
%R 10.18653/v1/W18-6211
%U https://aclanthology.org/W18-6211
%U https://doi.org/10.18653/v1/W18-6211
%P 72-78
Markdown (Informal)
[Not Just Depressed: Bipolar Disorder Prediction on Reddit](https://aclanthology.org/W18-6211) (Sekulic et al., WASSA 2018)
ACL
- Ivan Sekulic, Matej Gjurković, and Jan Šnajder. 2018. Not Just Depressed: Bipolar Disorder Prediction on Reddit. In Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis, pages 72–78, Brussels, Belgium. Association for Computational Linguistics.