@inproceedings{daudert-buitelaar-2018-linking,
title = "Linking News Sentiment to Microblogs: A Distributional Semantics Approach to Enhance Microblog Sentiment Classification",
author = "Daudert, Tobias and
Buitelaar, Paul",
editor = "Balahur, Alexandra and
Mohammad, Saif M. and
Hoste, Veronique and
Klinger, Roman",
booktitle = "Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis",
month = oct,
year = "2018",
address = "Brussels, Belgium",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/W18-6216/",
doi = "10.18653/v1/W18-6216",
pages = "107--115",
abstract = "Social media`s popularity in society and research is gaining momentum and simultaneously increasing the importance of short textual content such as microblogs. Microblogs are affected by many factors including the news media, therefore, we exploit sentiments conveyed from news to detect and classify sentiment in microblogs. Given that texts can deal with the same entity but might not be vastly related when it comes to sentiment, it becomes necessary to introduce further measures ensuring the relatedness of texts while leveraging the contained sentiments. This paper describes ongoing research introducing distributional semantics to improve the exploitation of news-contained sentiment to enhance microblog sentiment classification."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="daudert-buitelaar-2018-linking">
<titleInfo>
<title>Linking News Sentiment to Microblogs: A Distributional Semantics Approach to Enhance Microblog Sentiment Classification</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tobias</namePart>
<namePart type="family">Daudert</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Buitelaar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2018-10</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alexandra</namePart>
<namePart type="family">Balahur</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saif</namePart>
<namePart type="given">M</namePart>
<namePart type="family">Mohammad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Veronique</namePart>
<namePart type="family">Hoste</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Roman</namePart>
<namePart type="family">Klinger</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Brussels, Belgium</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Social media‘s popularity in society and research is gaining momentum and simultaneously increasing the importance of short textual content such as microblogs. Microblogs are affected by many factors including the news media, therefore, we exploit sentiments conveyed from news to detect and classify sentiment in microblogs. Given that texts can deal with the same entity but might not be vastly related when it comes to sentiment, it becomes necessary to introduce further measures ensuring the relatedness of texts while leveraging the contained sentiments. This paper describes ongoing research introducing distributional semantics to improve the exploitation of news-contained sentiment to enhance microblog sentiment classification.</abstract>
<identifier type="citekey">daudert-buitelaar-2018-linking</identifier>
<identifier type="doi">10.18653/v1/W18-6216</identifier>
<location>
<url>https://aclanthology.org/W18-6216/</url>
</location>
<part>
<date>2018-10</date>
<extent unit="page">
<start>107</start>
<end>115</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Linking News Sentiment to Microblogs: A Distributional Semantics Approach to Enhance Microblog Sentiment Classification
%A Daudert, Tobias
%A Buitelaar, Paul
%Y Balahur, Alexandra
%Y Mohammad, Saif M.
%Y Hoste, Veronique
%Y Klinger, Roman
%S Proceedings of the 9th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis
%D 2018
%8 October
%I Association for Computational Linguistics
%C Brussels, Belgium
%F daudert-buitelaar-2018-linking
%X Social media‘s popularity in society and research is gaining momentum and simultaneously increasing the importance of short textual content such as microblogs. Microblogs are affected by many factors including the news media, therefore, we exploit sentiments conveyed from news to detect and classify sentiment in microblogs. Given that texts can deal with the same entity but might not be vastly related when it comes to sentiment, it becomes necessary to introduce further measures ensuring the relatedness of texts while leveraging the contained sentiments. This paper describes ongoing research introducing distributional semantics to improve the exploitation of news-contained sentiment to enhance microblog sentiment classification.
%R 10.18653/v1/W18-6216
%U https://aclanthology.org/W18-6216/
%U https://doi.org/10.18653/v1/W18-6216
%P 107-115
Markdown (Informal)
[Linking News Sentiment to Microblogs: A Distributional Semantics Approach to Enhance Microblog Sentiment Classification](https://aclanthology.org/W18-6216/) (Daudert & Buitelaar, WASSA 2018)
ACL